首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative monolayer and infrared study of analogues of gramicidin A containing either tyrosines or naphthylalanines instead of tryptophans indicates that the nature of the aromatic residues influences the favoured conformation of the peptides. Polar residues favour the single stranded DL helix while non polar residues favour the double stranded helix. For partly tryptophan to naphthylalanine substituted analogues the positions of the substitutions orientate the favored conformation. The nature of these substitutions may also modify the peptide-lipid interactions. Correspondence to: F. Heitz Chemical structures of the gramicidin A analogues mentioned in this paper. The differences from gramicidin A are underlined. GM: GT:  相似文献   

2.
In order to understand how aromatic residues modulate the function of membrane-spanning proteins, we examined the role of the four tryptophans in gramicidin A (gA) in determining the average duration and permeability characteristics of membrane-spanning gramicidin channels; the tryptophan residues were replaced by tyrosine (gramicidin T, gT), tyrosine O-benzyl ether [gramicidin T(Bzl), gT(Bzl)], naphthylalanine (gramicidin N, gN), and phenylalanine (gramicidin M enantiomer, gM-). These analogues form channels with durations and conductances that differ some 10- and 16-fold, respectively. The single-channel conductance was invariably decreased by the Trp----Yyy replacement, and the relative conductance alterations were similar in phosphatidylcholine (DPhPC) and monoglyceride (GMO) bilayers. The duration variations exhibited a more complex pattern, which was quite different in the two membrane environments: in DPhPC bilayers, gN channels have an average duration that is approximately 2-fold longer than that of gA channels; in GMO bilayers, the average duration of gN channels is about one-tenth that of gA channels. The sequence-dependent alterations in channel function do not result from alterations in the channels' peptide backbone structure, because heterodimers can form between the different analogues and gramicidine A, and there is no energetic cost associated with heterodimer formation [cf. Durkin, J. T., Koeppe, R. E., II, & Andersen, O. S. (1990) J. Mol. Biol. 211, 221]. The alterations in permeability properties are consistent with the notion that Trp residues alter the energy profile for ion permeation through long-range electrostatic interactions.  相似文献   

3.
This paper describes the single channel properties of a series of synthetic analogues of gramicidin A, where all four tryptophans are replaced either by tyrosine or by several O-protected (benzyl, methyl, ethyl or t-butyl) derivatives. It is shown that, although all analogues bear similar dipole moment on their side-chains, the conductance depends on the hydrophobicity of these protecting groups. An analysis of the conductance data suggests that the conductance is governed by the binding process and a possible explanation, based on conformational considerations, is proposed.Abbreviations GA X=tryptophane - GM X=phenylalanine - GN X=naphthylalanine - GQ8 X=8-quinolylalanine - GQ4 X=4-quinolylalanine - GT X=tyrosine - GTBzl X=O-benzyltyrosine - GTMe X=O-methyltyrosine - GTEt X=O-ethyltyrosine - GTBu X=O-t-butyltyrosine  相似文献   

4.
Four single-site 15N-labeled molecules of gramicidin have been synthesized using the 9-fluorenylmethoxycarbonyl method of solid phase peptide synthesis. Formylvaline was coupled as the N-terminal amino acid, and the peptide was cleaved from the resin with ethanolamine. Each synthesized gramicidin was purified in one step by semipreparative reverse phase high performance liquid chromatography and obtained in overall yields as high as 86%. The peptide was characterized by comparison with natural gramicidin using amino acid analysis, u.v. spectroscopy, and analytical high performance liquid chromatography.  相似文献   

5.
The synthesis of (1-13C)-Phe9-gramicidin (90% enriched) was carried out by the solid phase method. The peptide was removed from the resin by treatment with ethanolamine, deblocked, formylated and purified by preparative t.l.c. to obtain the gramicidin analog in an overall yield of 24%. The peptide was verified and characterized by high pressure liquid chromatography, carbon-13 nuclear magnetic resonance, circular dichroism and single channel currents. Single channel conductances were found to be similar to those of (1-13C)-Phe11-GB but significantly lower than that of gramicidin A. When this gramicidin analog was incubated with phospholipid, the characteristic channel spectrum was not obtained and interaction with sodium ion was not observed. A possible explanation for this behavior is discussed.  相似文献   

6.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers.  相似文献   

7.
Synthesis and characterization of 1-(13) C-D X Leu12, 14 gramicidin A   总被引:2,自引:0,他引:2  
The 13C-D-Leu12, 14 gramicidin A was synthesized by the solid phase method incorporating 13C-D-leucine in positions 12 and 14 with about 25 and 50% enrichment, respectively. The pentadecapeptide was removed from the resin by ethanolamine treatment, with the N-protecting group (Boc) still on. After removal of the protecting group, the peptide was formylated and purified by preparative t.l.c. to obtain 13C-D-Leu12, 14 gramicidin A in a very pure state in an overall yield of about 12.5%. The peptide was then thoroughly characterized by HPLC which gave one single peak with the same retention time as that of Val1-gramicidin A of the natural gramicidin mixture. The CD spectra of the synthetic and the HPLC purified natural Val1-GA were obtained and found to be identical, indicating the optical purity of the sample. The synthetic GA was characterized by 13C n.m.r. spectrum and compared with that of natural GA. Single channel conductance parameters of the synthetic GA were determined and found to be indistinguishable from those of natural Val1-GA in lipid bilayer membranes and the mean channel lifetime was found to be as reported earlier by others.  相似文献   

8.
Stable peptides have been explored as epitope mimics for protein–protein and protein–nucleic acid interactions; however, presentation of a regular structure is critical. Aromatic interactions are ubiquitous and are competent at stabilizing a β‐hairpin fold. The greatest stabilization has been reported from pairs of tryptophan side chains. Naphthylalanine residues are often used as tryptophan replacements, but it is not clear if 1‐naphthylalanine or 2‐naphthylalanine is adequate at replicating the geometry and stability observed with tryptophan aromatic interactions. Herein, a 12‐residue peptide has been constructed with laterally disposed aromatic amino acids. A direct comparison is made between tryptophan and other bicyclic, unnatural amino acids. Significant stabilization is gained from all bicyclic amino acids; however, geometric analysis shows that only 1‐naphthylalanine adopts a similar edge to face geometry as tryptophan, whereas the 2‐naphthylalanine appears most similar to a substituted phenylalanine. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
A new linear gramicidin analog bearing a biotinyl group grafted on C-terminal part was designed to study ligand–receptor interactions. The C-terminal alcohol in the native peptide was first replaced by an amino group. Then the peptide was synthesized on a polystyrene resin functionalized by the 2-chlorotrityl chloride following a biotinylation performed in solution. This new N′-biotinyl-(EDA)15-Gramicidin A was reconstituted in planar lipid bilayers and exhibited channel activities similar to those of natural gramicidin, with unitary conductance value about 30 ps in 1 m KCl. Furthermore this ionophore activity was quenched by addition of streptavidin in the surrounding medium. Our system is an outstanding tool for monitoring ligand–receptor interactions and could be used for designing a new biosensor. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The effects of phase transition from normal to interdigitated lipid bilayer on the function and structure of membrane proteins were studied using linear gramicidin (gramicidin A) as a model. Interdigitated bilayer structure of dipalmitoylphosphatidylglycerol (DPPG) liposomes that was induced by atropine could not be changed notably by intercalating of gramicidin. The K+ transportation of gramicidin in both normal and interdigitated bilayer was assayed by measuring the membrane potential. Results showed that gramicidin in interdigitated bilayer exhibited lower transport capability. Intrinsic fluorescence spectrum of gramicidin in interdigitated bilayer blue-shifted 2.8 nm from the spectrum in normal bilayer, which means that interdigitation provides a more hydrophobic environment for gramicidin. Circular dichroism measurement results indicated that the conformation of gramicidin in interdigitated bilayer is not the typical beta6.3 helix as in the normal bilayer. The results suggested that the interdigitated lipid bilayer might largely affect the structure and function of membrane proteins.  相似文献   

11.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

12.
Szule JA  Rand RP 《Biophysical journal》2003,85(3):1702-1712
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the effects produced by gramicidin on lipid layers were measured. These measurements explore how peptides are able to modulate the spontaneous curvature properties of phospholipid assemblies. The reverse hexagonal, H(II), phase formed by dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin itself was adding negative curvature to the lipid layers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature, R0pgram, of -7.1 A. The addition of up to 4 mol% gramicidin in DOPE did not result in the monolayers becoming stiffer, as measured by the monolayer bending moduli. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (L(alpha)) phase when hydrated, but undergoes a transition into the reverse hexagonal (H(II)) phase when mixed with gramicidin. The lattice dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the lipid monolayers but the mixture behaved structurally much less consistently than DOPE/gramicidin. Only at 12 mol% gramicidin in dioleoylphosphatidylcholine could an apparent radius of intrinsic curvature of gramicidin (R0pgram) be estimated as -7.4 A. This mixture formed monolayers that were very resistant to bending, with a measured bending modulus of 115 kT.  相似文献   

13.
We designed five ascidiacyclamide analogues [cyclo(‐Xxx1‐oxazoline2‐d ‐Val3‐thiazole4‐l ‐Ile5‐oxazoline6‐d ‐Val7‐thiazole8‐)] incorporating l ‐1‐naphthylalanine (l ‐1Nal), l ‐2‐naphthylalanine (l ‐2Nal), d ‐phenylalanine (d ‐Phe), d ‐1‐naphthylalanine (d ‐1Nal) or d ‐2‐naphthylalanine (d ‐2Nal) into the Xxx1 position of the peptide. The conformations of these analogues were then examined using 1H NMR, CD spectroscopy, and X‐ray diffraction. These analyses suggested that d ‐enantiomer‐incorporated ASCs [(d ‐Phe), (d ‐1Nal), and (d ‐2Nal)ASC] transformed from the folded to the open structure in solution more easily than l ‐enantiomer‐incorporated ASCs [(l ‐Phe), (l ‐1Nal), and (l ‐2Nal)ASC]. Structural comparison of the two analogues containing isomeric naphthyl groups showed that the 1‐naphthyl isomer induced a more stable open structure than the 2‐naphthyl isomer. In particular, [d ‐1Nal]ASC showed the most significant transformation from the folded to the open structure in solution, and exhibited the strongest cytotoxicity toward HL‐60 cells. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
15.
The effects of two different gramicidin conformations on lipid phase behaviour and dynamics are compared. Samples of chain-perdeuterated dimyristoylphosphatidylcholine containing gramicidin were first prepared with gramicidin in a state having a circular dichroism spectrum generally identified as corresponding to the non-channel conformation. The effects, on bilayer lipid properties, of gramicidin in this conformation were then determined using deuterium nuclear magnetic resonance measurements of acyl chain orientational order and transverse relaxation times as a function of temperature. These samples were then incubated at 65 degrees C to convert the gramicidin to a state with a circular dichroism spectrum of the type generally identified with the channel conformation. The nuclear magnetic resonance measurements were then repeated. In the gel phase, it was found that transverse relaxation time and chain orientational order of the lipid were insensitive to gramicidin conformation. In the liquid crystalline phase, gramicidin in the channel conformation was found to have a slightly larger effect on transverse relaxation and orientational order than gramicidin in the non-channel conformation. The perturbation of the phase behavior by gramicidin was found to be relatively insensitive to gramicidin conformation.  相似文献   

16.
The influence of acylation on the conductance, average duration, and channel-forming potency of channels formed by gramicidin A analogues was investigated using single-channel and multichannel techniques. Lauroyl-, myristoyl-, palmitoyl-, stearoyl-, and oleoylgramicidin A were prepared by covalent coupling of that fatty acid to the C-terminal ethanolamine group. Acylation of gramicidin A does not affect the single-channel conductance or the minichannel frequency in diphytanoylphosphatidylcholine/n-decane black lipid membranes. However, the average duration of all acylgramicidin channels was increased approximately 5-fold as compared to unmodified gramicidin A, which has a duration of 0.9 s at 200-mV applied potential. Somewhat surprisingly the rate of channel formation of the acylgramicidins is decreased relative to gramicidin A: lauroyl- and stearoylgramicidin are approximately 200 times less effective in channel formation as compared to gramicidin A. We conclude that channels formed by the acylgramicidins and by gramicidin A are structurally and conformationally equivalent.  相似文献   

17.
The effect of gramicidin on macroscopic structure of the negatively charged membrane phospholipids cardiolipin, dioleoylphosphatidylglycerol and dioleoylphosphatidylserine in aqueous dispersions was investigated and compared with the effect of gramicidin on dioleoylphosphatidylcholine. It was shown by small-angle X-ray diffraction, 31P nuclear magnetic resonance and freeze-fracture electron microscopy that in all these lipid systems gramicidin is able to induce the formation of a hexagonal HII phase. 31P-NMR measurements indicated that the extent of HII phase formation in the various lipids ranged from about 40% to 60% upon gramicidin incorporation in a molar ratio of peptide to lipid of 1 : 10. Next, the following charged analogues of gramicidin were prepared: desformylgramicidin, N-succinylgramicidin and O-succinylgramicidin. The synthesis was verified with 13C-NMR and the effect of these analogues on lipid structure was investigated. It was shown that, as with gramicidin itself, the analogues induce HII phase formation in dioleoylphosphatidylcholine, lower and broaden the bilayer-to-HII phase transition in dielaidoylphosphatidylethanolamine and form lamellar structures upon codispersion with palmitoyllysophosphatidylcholine. Differential scanning calorimetry measurements indicated that, again like gramicidin, in phosphatidylethanolamine the energy content of the gel-to-liquid-crystalline phase transition is not affected by incorporation of the analogues, whereas in phosphatidylcholine a reduction of the transition enthalpy is found. These observations were explained in terms of a similar tendency to self-associate for gramicidin and its charged analogues. The results are discussed in the light of the various factors which have been suggested to be of importance for the modulation of lipid structure by gramicidin.  相似文献   

18.
Bacillus brevis (Brevibacillus parabrevis) ATCC 8185 synthesizes two kinds of antibiotic peptides, cyclopeptide tyrocidine and linear gramicidin. The production of linear gramicidin can be induced by the standard method (using a skim milk medium for pre-culture and beef broth for the main culture) employed for the induction of tyrocidine. In this study, we tried to determine the optimal growth medium for B. brevis ATCC 8185 for synthesizing linear gramicidin. The yield of linear gramicidin produced by the standard method was 3.11 microg/ml. When beef broth was used both as the pre-medium and the main medium, the yield of the antibiotic was only 0.59 microg/ml. To confirm the influence of skim milk, the strain was grown in a 1% skim milk medium. As a result, the amount of linear gramicidin produced reached 20.3 microg/ml. These findings show the importance of skim milk in the production of linear gramicidin. In the skim milk medium, the cells produced an extracellular protease 2 h before the linear gramicidin was expressed. The 1% skim milk medium pretreated by this protease did not allow the induction of linear gramicidin into the cells, and protease activity was not detected in the supernatant of the culture. When the cells were cultivated in a 1% egg albumin medium, protease activity from the supernatant of the culture was detected, but production of linear gramicidin was not observed. Therefore, a 1% casein medium was used for production of linear gramicidin. As a result, the yield of linear gramicidin produced in the medium reached 6.69 microg/ml. We concluded that a digested product of the extracellular protease from casein enhances linear gramicidin production.  相似文献   

19.
The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure.  相似文献   

20.
The thallium-205 chemical shift was determined as a function of temperature for the thallium(I) complexes of gramicidin A and gramicidin B in 2,2,2-trifluoroethanol. From the difference in magnitude of the induced chemical shift it was determined that gramicidin B does not bind the Tl(I) ion as well as does gramicidin A. This result may explain the lower single-channel conductance of gramicidin B relative to gramicidin A. Cabon-13 NMR studies strongly indicate that the binding site for gramicidin A and B is at teh tryptophan end of the molecule and that replacement of tryptophan residue at position 11 in gramicidin A with a phenylalanine to form gramicidin B produces a significant structural change at the tryptophan end of the molecule, but has little effect on the N-terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号