首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sporulation in Bacillus subtilis. The role of exoprotease   总被引:26,自引:8,他引:18       下载免费PDF全文
1. Intracellular turnover of protein was measured in wild-type Bacillus subtilis, which produces exoprotease at stage I in the sporulation process. Protein is degraded at a rate of 8–10%/hr. 2. As a result of this turnover, the proteins of the mother cell are extensively degraded and resynthesized by about 6hr., so that the later stages of spore formation occur in a cytoplasm containing mainly `new' protein. 3. The same protease appears to be responsible both for the intracellular turnover of protein and for extracellular proteolytic activity. In mutants that have lost the exoenzyme the intracellular protein is stable for many hours. In addition, these mutants fail to produce antibiotic and are asporogenous. When the exoprotease is regained as a result of back-mutation all the lost capacities of the cell are restored together. 4. Protease activity also accounts for the change in antigenic pattern of extracts of cells sampled during sporulation. Immunoelectrophoresis shows that, in the wild-type, the antigens characteristic of the vegetative cell have largely disappeared after a few hours; in the proteaseless mutants the vegetative-cell pattern is conserved. Apart from changing the protein pattern of the cell the protease could also have the function of removing protein inhibitors of sporulation. Other possible interpretations of the results are discussed.  相似文献   

2.
An intracellular serine protease (ISP-1) mutant of Bacillus subtilis was created by introducing a frameshift into the coding region of the cloned gene. Intracellular protease activity in the mutant was very low, yet sporulation in both nutrient broth and minimal medium was normal. The rate of bulk protein turnover in the mutant was slightly slower than that in the wild-type strain. These results suggest that the gene for ISP-1 is not essential and that ISP-1 is not the major enzyme involved in protein turnover during sporulation.  相似文献   

3.
The production of extracellular protease during sporulation in Bacillus subtilis 168 was investigated. Two proteases are produced, an alkaline serine protease and a neutral metalloprotease. In vivo inhibition of the serine protease with phenylmethylsulfonylfluoride indicated that the metalloprotease was degraded by the serine protease during sporulation. The experiments with phenylmethylsulfonylfluoride also show that the serine protease is necessary for the sequential process of sporulation and that it is required continuously for the first 2 to 3 h of the 8-h process.  相似文献   

4.
A single site mutant of Bacillus subtilis with a streptovaricin-resistant RNA polymerase has been isolated; this mutation caused temperature-sensitive sporulation, but had no effect on vegetative growth. The mutant (ts710) temperature-sensitive period irreversibly affected the middle and late stages of sporulation. Mutant cells grown at the nonpermissive temperature exhibited abnormal serine protease accumulation, serine esterase accumulation, alkaline phosphatase accumulation, RNA polymerase template specificity changes, and pulse-labeled RNA synthesis profiles. The accumulation of metal protease was not affected at the nonpermissive temperature. Attempts to isolate single site mutants which were streptolydigin-resistant, and temperature-sensitive for sporulation, were unsuccessful.  相似文献   

5.
Amino acids added to a population ofBacillus megaterium immediately after its transfer to a sporulation medium stimulated growth, delayed sporulation by 1 h, and delayed the development of intracellular cytoplasmic serine proteinase (ISP) activity. However, the ISP activity in late sporulation stages exceeded twice that of the control population. Amino acids supplemented at T3, i.e., at the time when engulfed forespores were developing, caused a decrease of specific ISP activity. The course of the phenylmethane sulfonyl fluoride (PMSF)-resistant activity in the cytoplasm was not affected by amino acids. Intracellular degradation of proteins prelabeled at the end of the growth phase was decreased by amino acids during the reversible sporulation phase but was only slightly affected later.  相似文献   

6.
Pievious work with MAPI, a serine protease inhibitor, has shown that inactivation of membrane bound protease by MAPI resulted in inhibition of normal sporulation of Bacillus subtilis IFO 3027 [Shimizu et al, Agric. Biol. Chem., 48, 365 (1984)]. In the cells cultured with MAPI, the cellular amount of IP-I, a cytoplasmic serine protease which is sensitive to EDTA was lower than the control cells. An endogenous proteinaceous inhibitor having specific inhibitory activity against IP-I was produced during the sporulation and its amount in the MAPI-treated cells was higher than that of control cells. The proteinaceous inhibitor was inactivated only by membrane bound protease. Consequently, IP-I was activated through degradation of proteinaceous inhibitor by membrane bound protease. It seems probable that the proteinaceous inhibitor and membrane bound protease are involved in the regulation of a protease system in sporulating cells of B. subtilis.  相似文献   

7.
Intracellular catabolism of proteins labeled at the end of the exponential growth proceeded in two phases during sporulation. The first phase was induced by starvation and took place also in cells whose sporulation was inhibited by netropsin. The second phase of degradation, which was triggered at the onset of the irreversible sporulation phase, was inhibited by netropsin. Intracellular proteolytic activity determined in disintegrated cells, i.e., primarily the activity of the cytoplasmic Ca2+-dependent serine proteinase(s) at the first place, was increasing throughout the sporulation process and reached its maximum during the irreversible sporulation phase. Its increase was suppressed by netropsin. Fractionation of the cell sap by HPLC revealed a similar distribution of proteolytic activities in the extract from control and netropsin-inhibited cells. The antibiotic thus probably affected the activation, not the formation of the cytoplasmic serine proteinase(s). Netropsin also inhibited an increase of proteolytic activity in the membrane fraction, probably owing to the presence of two different proteolytic enzymes.  相似文献   

8.
To reveal the pecularities of the growth under the conditions of catabolite repression (medium 2) of Bacillus subtilis and the mutants obtained, the investigations of dynamics of the following processes were carried out: alteration of the pH of the culture exhaustion of glucose in the medium, appearance of the activity of both aconitase in the cells and extracellular metal- and serine proteases in the supernatant, and the appearance of the thermoresistant spores. The following features were observed during the growth under the conditions of catabolite repression: 1. Bacillus subtilis WB 746 and cgs mutants: the death of the main part of the culture after the Iogarithmic phase of growth (LPG), the presence of the secondary LPG of the survived cells which have the increasing activity of aconitase, the appearance and sharp increase in the extracellular serine protease activity 6 hours before thermoresistant spore formation. In the case of cgs mutants the activity of metal proteases appears and increases during the secondary LPG; 2. In the culture of cgl mutants the pH is lowered to 5.1 at the end of the LPG and after the glucose exhaustion the death of almost all the culture follows; 3. cgr mutants: a comparatively high activity of aconitase in the cells is found by the time of the early LPG, and at the end of the LPG the activity of both metal- and serine proteases appear in the supernatant of the culture and the secondary induction of the serine protease activity 6 hours before thermoresistant spore formation is observed. The serine protease activity found in the supernatant before and after the secondary induction of the enzyme belongs to the identical protein. During the stationary phase of the growth of cgr mutants, the high rate of 3H-uridine incorporation into the RNA molecules which have the electrophoretic mobility of mRNA was observed. The sporulation of Bac. subtilis strains under investigation, except cgl mutants, occurs when the culture has reached the definite state: the alkaline pH, the presence of the aconitase activity in the cells and the induced activity of serine protease.  相似文献   

9.
Serine protease activity in developmental stages of Eimeria tenella   总被引:1,自引:0,他引:1  
A number of complex processes are involved in Eimeria spp. survival, including control of sporulation, intracellular invasion, evasion of host immune responses, successful reproduction, and nutrition. Proteases have been implicated in many of these processes, but the occurrence and functions of serine proteases have not been characterized. Bioinformatic analysis suggests that the Eimeria tenella genome contains several serine proteases that lack homology to trypsin. Using RT-PCR, a gene encoding a subtilisin-like and a rhomboid protease-like serine protease was shown to be developmentally regulated, both being poorly expressed in sporozoites (SZ) and merozoites (MZ). Casein substrate gel electrophoresis of oocyst extracts during sporulation demonstrated bands of proteolytic activity with relative molecular weights (Mr) of 18, 25, and 45 kDa that were eliminated by coincubation with serine protease inhibitors. A protease with Mr of 25 kDa was purified from extracts of unsporulated oocysts by a combination of affinity and anion exchange chromatography. Extracts of SZ contained only a single band of inhibitor-sensitive proteolytic activity at 25 kDa, while the pattern of proteases from extracts of MZ was similar to that of oocysts except for the occurrence of a 90 kDa protease, resistant to protease inhibitors. Excretory-secretory products (ESP) from MZ contained AEBSF (4-[2-Aminoethyl] benzenesulphonyl fluoride)-sensitive protease activity with a specific activity about 10 times greater than that observed in MZ extracts. No protease activity was observed in the ESP from SZ. Pretreatment of SZ with AEBSF significantly reduced SZ invasion and the release of the microneme protein, MIC2. The current results suggest that serine proteases are present in all the developmental stages examined.  相似文献   

10.
Micromonospora echinospora differentiates in both submerged and surface cultures producing abundant dark spores after a period of vegetative mycelial growth. In submerged batch cultures, under either carbon or nitrogen limiting conditions, protease activity was found to coincide with sporulation indicating a relationship between proteolytic activity and differentiation in this organism. Further evidence for this link was provided from surface grown cultures wherein sporulation was inhibited by the serine protease inhibitors TLCK and TPCK. The association between proteolysis and differentiation apparent in this organism correlates with evidence of a similar phenomenon observed in the streptomycetes, suggesting that this may be a common response associated with differentiation in filamentous actinomycetes.  相似文献   

11.
《Cellular signalling》2014,26(10):2266-2275
Testes-specific protease 50 (TSP50) is a novelly identified pro-oncogene and it shares a similar enzymatic structure with many serine proteases. Our previous results suggested that TSP50 could promote tumorigenesis through degradation of IκBα protein and activating NF-κB signaling, and the threonine mutation in its catalytic triad could depress TSP50-mediated cell proliferation. However, whether the two other residues in the catalytic triad of TSP50 play a role in maintaining protease activity and tumorigenesis, and the mechanisms involved in this process remain unclear. Here, we constructed and characterized three catalytic triad mutants of TSP50 and found that all the mutants could significantly depress TSP50-induced cell proliferation and colony formation in vitro and tumor formation in vivo, and the aspartic acid at position 206 in the catalytic triad played a more crucial role than threonine and histidine in this process. Mechanistic studies revealed that the mutants in the catalytic triad abolished the enzyme activity of TSP50, but did not change the cellular localization. Furthermore, our data indicated that all the three mutants suppressed activation of NF-κB signal by preventing the interaction between TSP50 and the NF-κB:IκBα complex. Most importantly, we demonstrated that TSP50 could interact with IκBα protein and cleave it directly as a new protease in vitro.  相似文献   

12.
《Process Biochemistry》2007,42(5):773-790
Bacillus thuringiensis (Bt) subspecies produces metalloproteases and serine alkaline proteases (endogenous) which affect sporulation and entomotoxicity against different insect orders. The production of Bt proteases is investigated in conventional medium and alternative substrates with future repercussions on Bt formulations and larval mortality. Relationship between protease activity and total cell count during Bt fermentation has been discussed while protease activity as a potential indicator of entomotoxicity has also been explored. In general, the proteases influence entomotoxicity in two divergent ways—processing of inactive protoxins to active toxin fractions (by endogenous Bt as well as exogenous larval midgut proteases) and degradation of protoxins to fragments which sometimes lack insecticidal activity (usually by Bt proteases). In fact, the function of endogenous (intra and extracellular) proteases is ambiguous and has been raising serious questions on their role in larval mortality. The review explores various schools of thoughts (traditional as well as advanced) to solve the enigma of protease interactions with crystal toxins at different levels (sporulation and insecticidal action).  相似文献   

13.
The isolation and properties of a single site temperature sensitive protease mutant of Bacillus subtilis are described. Numerous criteria suggest that the mutation resides in the structural gene coding for a basic serine protease. The mutation has been mapped between aroD and lys-1 on the Bacillus subtilis chromosome. This protease exists as an intracellular and extracellular enzyme. The mutant cells are temperature sensitive for sporulation, antibiotic production, and the sporulation-specific alteration in DNA-dependent RNA polymerase β subunit. Several types of evidence indicate a direct involvement of this enzyme in a limited proteolytic cleavage of vegetative RNA polymerase β subunit, which produces the lower molecular weight β subunit found in sporulating cells. The derangement in this process is sufficient to account for the stoppage of sporulation at stage 0 when the mutant cells are grown at the non-permissive temperature.  相似文献   

14.
15.
Bacilysin biosynthesis and alkaline serine protease production inBacillus subtilis 168 were monitored and compared in batch cultures when various effectors of sporulation were added at different stages of growth in a medium containing sucrose and glutamate. Depending on the time of addition, glucose affected sporulation and serine protease formation to the same extent, but had no effect on bacilysin production. Ammonium andl-alanine additions suppressed all three processes. Casamino acids severely interfered with bacilysin formation and sporulation, but not with protease formation. Decoyinine, a well-known inducer of sporulation, induced protease formation as well, but did not affect bacilysin biosynthesis. The extent of the observed effects depended largely on the time of metabolite additions. The results are discussed with reference to a possible coregulation of sporulation and the formation of bacilysin and alkaline serine protease inB. subtilis.  相似文献   

16.
Blastocladiella emersonii express two different types of caseinolytic activities during the process of sporulation. They can be distinguished in vitro on the basis of their sensitivity to antipain. The alkaline protease activity is inhibited by antipain and PMSF, whereas the second enzyme, denoted here as the caseinolytic activity, is not inhibited by antipain but is sensitive to PMSF and concanavalin A. In vivo, antipain blocks sporulation when added to cultures during the first 60 min of sporulation, but if added 90 min after sporulation is induced, it is biologically ineffective. In both cases, antipain enters the cells and decreases the rate of total protein degradation by 60%. The antisporulation effect of antipain cannot be reversed by washing the cells. The ability of cells which have been pretreated with antipain to sporulate can be recovered, but only after a period of growth. These data provide evidence for the critical role of the alkaline protease for a limited period of time during the initial phases of sporulation in Blastocladiella. A hypothesis based on the processing of preformed proteins by the alkaline protease as a key control mechanism for sporulation is presented.  相似文献   

17.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   

18.
Dichelobacter nodosus is the principal causative agent of ovine footrot and its extracellular proteases are major virulence factors. Virulent isolates of D. nodosus secrete three subtilisin-like serine proteases: AprV2, AprV5 and BprV. These enzymes are each synthesized as precursor molecules that include a signal (pre-) peptide, a pro-peptide and a C-terminal extension, which are processed to produce the mature active forms. The function of the C-terminal regions of these proteases and the mechanism of protease processing and secretion are unknown. AprV5 contributes to most of the protease activity secreted by D. nodosus. To understand the role of the C-terminal extension of AprV5, we constructed a series of C-terminal-deletion mutants in D. nodosus by allelic exchange. The proteases present in the resultant mutants and their complemented derivatives were examined by protease zymogram analysis, western blotting and mass spectrometry. The results showed that the C-terminal region of AprV5 is required for the normal expression of protease activity, deletion of this region led to a delay in the processing of these enzymes. D. nodosus is an unusual bacterium in that it produces three closely related extracellular serine proteases. We have now shown that one of these enzymes, AprV5, is responsible for its own maturation, and for the optimal cleavage of AprV2 and BprV, to their mature active forms. These studies have increased our understanding of how this important pathogen processes these virulence-associated extracellular proteases and secretes them into its external environment.  相似文献   

19.
Azeez A  Sane AP  Bhatnagar D  Nath P 《Phytochemistry》2007,68(10):1352-1357
Programmed cell death during senescence in plants is associated with proteolysis that helps in remobilization of nitrogen to other growing tissues. In this paper, we provide one of the few reports for the expression of specific serine proteases during senescence associated proteolysis in Gladiolus grandiflorus flowers. Senescence in tepals, stamens and carpels results in an increase in total protease activity and a decrease in total protein content. Of the total protease activity, serine proteases account for about 67-70% while cysteine proteases account for only 23-25%. In-gel assays using gelatin as a substrate and specific protease inhibitors reveal the enhanced activity of two trypsin-type serine proteases of sizes 75 kDa and 125 kDa during the course of senescence. The activity of the 125 kDa protease increases not only during tepal senescence but also during stamen and carpel senescence indicating that it is responsive to general senescence signals.  相似文献   

20.
Amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) is caused by ingestion of pADAP plasmid carrying isolates of Serratia entomophila or Serratia proteamaculans (Enterobacteriaceae) and causes infected larvae to cease feeding and clear their midgut to a pale amber colour where midgut serine protease activities are virtually eliminated. Using bacterial strains and mutants expressing combinations of the anti-feeding (afp) and gut clearance (sep) gene clusters from pADAP, we manipulated the disease phenotype and demonstrated directly the relationship between gene clusters, phenotype and loss of enzyme activity. Treatment with afp-expressing strains caused cessation of feeding without gut clearance where midgut protease activity was maintained at levels similar to that of healthy larvae. Treatment with strains expressing sep-genes caused gut clearance followed by a virtual elimination of trypsin and chymotrypsin titre in the midgut indicating both the loss of pre-existing enzyme from the lumen and a failure to replenish enzyme levels in this region by secretion from the epithelium. Monitoring of enzymatic activity through the alimentary tract during expression of disease showed that loss of serine protease activity in the midgut was matched by a surge of protease activity in the hindgut and frass pellets, indicating a flushing and elimination of the midgut contents. The blocking of enzyme secretion through amber disease appears to be selective as leucine aminopeptidase and α-amylase were still detected in the midgut of diseased larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号