首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pantoea agglomerans has been transformed from a commensal bacterium into two related gall-forming pathovars by acquisition of pPATH plasmids containing a pathogenicity island (PAI). This PAI harbors an hrp/hrc gene cluster, type III effectors, and phytohormone biosynthetic genes. DNA typing by pulsed-field gel electrophoresis revealed two major groups of P. agglomerans pv. gypsophilae and one group of P. agglomerans pv. betae. The pPATH plasmids of the different groups had nearly identical replicons (98% identity), and the RepA protein showed the highest level of similarity with IncN plasmid proteins. A series of plasmids, designated pRAs, in which the whole replicon region (2,170 bp) or deleted derivatives of it were ligated with nptI were generated for replicon analysis. A basic 929-bp replicon (pRA6) was sufficient for replication in Escherichia coli and in nonpathogenic P. agglomerans. However, the whole replicon region (pRA1) was necessary for expulsion of the pPATH plasmid, which resulted in the loss of pathogenicity. The presence of direct repeats in the replicon region suggests that the pPATH plasmid is an iteron plasmid and that the repeats may regulate its replication. The pPATH plasmids are nonconjugative but exhibit a broad host range, as shown by replication of pRA1 in Erwinia, Pseudomonas, and Xanthomonas. Restriction fragment length polymorphism analyses indicated that the PAIs in the two groups of P. agglomerans pv. gypsophilae are similar but different from those in P. agglomerans pv. betae. The results could indicate that the pPATH plasmids evolved from a common ancestral mobilizable plasmid that was transferred into different strains of P. agglomerans.  相似文献   

2.
The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.  相似文献   

3.
The epiphyte Pantoea agglomerans 48b/90, which has been isolated from soybean leaves, belongs to the Enterobacteriaceae, as does the plant pathogen Erwinia amylovora, which causes fire blight on rosaceous plants such as apples and leads to severe economic losses. Since P. agglomerans efficiently antagonizes phytopathogenic bacteria, the P. agglomerans strain C9-1 is used as a biocontrol agent (BlightBan C9-1). Here we describe the bioassay-guided isolation of a peptide antibiotic that is highly active against the plant pathogen E. amylovora and pathovars of Pseudomonas syringae, and we elucidate its structure. Bioassay-guided fractionation using anion-exchange chromatography followed by hydrophobic interaction liquid chromatography yielded the bioactive, highly polar antibiotic. The compound was identified as 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine by using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance techniques. This peptide was found to be produced by three of the nine P. agglomerans strains analyzed. Notably, the biocontrol strain P. agglomerans C9-1 also produces 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine. Previously, 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been characterized only from Serratia plymuthica. 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been shown to inhibit the growth of the human pathogen Candida albicans efficiently, but its involvement in the defense of epiphytes against phytopathogenic bacteria has not been investigated so far.Microbial pathogens pose a major threat to many plants and can cause enormous losses in agriculture. Microorganisms that antagonize pathogens can offer a way to fight plant diseases that is more environmentally friendly than chemical treatment. Such diseases include fire blight, which is caused by Erwinia amylovora and affects many rosaceous plants, e.g., apple and pear (18, 25, 29, 38).Suitable strains for biocontrol agents are often plant-associated microorganisms that are forced to defend their ecological niches under natural conditions and are thus adapted to competition with plant pathogens (2, 3). The species Pantoea agglomerans (formerly Erwinia herbicola) comprises many strains that are promising sources for biocontrol agents (8, 15, 30, 32, 43). P. agglomerans strains are ubiquitous in nature, inhabiting plant surfaces, water, soil, animals, and humans (9, 11). Several Pantoea isolates are known to inhibit E. amylovora efficiently in planta (39, 42). In vitro experiments have revealed some antibiotics from P. agglomerans and uncovered how they act against E. amylovora (22, 43). The known antibiotics produced by P. agglomerans strains, which belong to diverse chemical classes and affect different molecular targets, exhibit both narrow- and broad-spectrum activities (21).For example, P. agglomerans Eh318, isolated from apple leaves, produces two peptide antibiotics, pantocin A and pantocin B; both interfere with amino acid biosynthesis. Pantocin A blocks l-histidinol phosphate aminotransferase (20), and pantocin B acts as an N-acetylornithine transaminase inhibitor (5). Consequently, their inhibitory effects can be compensated for by supplementation with l-histidine and l-arginine, respectively (43). Giddens et al. (2002) described a phenazine antibiotic and its precursors, which were produced by P. agglomerans Eh1087 (10). Andrimid, a hybrid nonribosomal peptide polyketide antibiotic from P. agglomerans Eh335, selectively blocks the carboxyl transfer reaction of prokaryotic acetyl coenzyme A carboxylase; this reaction catalyzes the first committed step of fatty acid biosynthesis (19, 26). P. agglomerans E325 sold as Bloomtime Biological (Northwest Agricultural Products, Pasco, WA) acidifies flower stigmata, thus reducing the growth of E. amylovora. Simultaneously, it produces an antibiotic that has high specificity against E. amylovora and is effective under low-phosphate and low-pH conditions (34).P. agglomerans C9-1, which is registered as the biocontrol agent BlightBan C9-1 (Nufarm Agricultural Inc.), produces two antibiotics, herbicolin O and herbicolin I (16). Like pantocin A, herbicolin O loses its activity in the presence of histidine. However, herbicolin I does not become ineffective in the presence of amino acids (17). Although C9-1 is registered as a biocontrol agent, the chemical nature of herbicolins has remained largely unknown (13, 14).P. agglomerans 48b/90 (Pa48b), an epiphyte from soybean leaves (40), attracted our attention because it strongly inhibits the growth of E. amylovora and Pseudomonas syringae pv. glycinea (27), the pathogen that causes the bacterial blight of soybean. Since the mode of action of Pa48b against plant pathogens, in particular E. amylovora, is elusive, we looked for the molecular basis for the biocontrol potential of Pa48b. Here we describe the isolation, structure elucidation, and bioactivity of a potent antibiotic against plant pathogens that is produced by several P. agglomerans strains. The properties of this antibiotic perfectly match those of the chemically unidentified herbicolin I from P. agglomerans C9-1 (BlightBan C9-1).  相似文献   

4.
Pathogenic bacteria interact not only with the host organism but most probably also with the resident microbial flora. In the knot disease of the olive tree (Olea europaea), the causative agent is the bacterium Pseudomonas savastanoi pv. savastanoi (Psv). Two bacterial species, namely Pantoea agglomerans and Erwinia toletana, which are not pathogenic and are olive plant epiphytes and endophytes, have been found very often to be associated with the olive knot. We identified the chemical signals that are produced by strains of the three species isolated from olive knot and found that they belong to the N-acyl-homoserine lactone family of QS signals. The luxI/R family genes responsible for the production and response to these signals in all three bacterial species have been identified and characterized. Genomic knockout mutagenesis and in planta experiments showed that virulence of Psv critically depends on QS; however, the lack of signal production can be complemented by wild-type E. toletana or P. agglomerans. It is also apparent that the disease caused by Psv is aggravated by the presence of the two other bacterial species. In this paper we discuss the potential role of QS in establishing a stable consortia leading to a poly-bacterial disease.  相似文献   

5.
A collection of Pseudomonas strains was isolated in different regions of Tunisia in the period 2016–2017 from the fruits and leaves of Citrus sinensis cv. ‘Valencia Late’ and Citrus limon cv. ‘Eureka’ plants with symptoms of blast and black pit disease. A phylogenetic analysis of the housekeeping gene rpoD was used for strain identification at the species level. The results demonstrated the affiliation of these strains with the genus Pseudomonas and revealed the presence of 11 strains representing two putative new species in two monophyletic branches. These strains were analyzed morphologically and genotypically by multilocus sequence analyses of the rpoD, gyrB and 16S rRNA (rrs) gene sequences, and their phenotypic characteristics by API 20NE and Biolog GEN III. Plant pathogenic properties were confirmed on fruits and detached leaves of C. limon cv. ‘Eureka’. Fatty acids and WC MALDI-TOF MS major protein profiles were determined. The genomes of both representatives were sequenced. The average nucleotide index and genome-to-genome distance from KC12T and E10BT are below the cut-off established for a described species. These results support the conclusion that the strains KC12T, KC17, KC20, KC22, KC24A, KC25 and KC26 represent a novel species of Pseudomonas, for which the name of Pseudomonas kairouanensis is proposed. The type strain is KC12T (=CECT9766 and CFBP 8662). The strains E10BT, E10AB, E10CB1 and Iy3BA represent another novel species of Pseudomonas for which the name of Pseudomonas nabeulensis is proposed; the type strain is E10BT (=CECT9765 and CFBP 8661).  相似文献   

6.
We identified a compound in culture supernatants of Erwinia species, such as Erwinia amylovora, E. pyrifoliae, E. billingiae, E. tasmaniensis, E. persicina and E. rhapontici absorbing at 340 nm, which was associated before with the yellow pigment produced by E. amylovora on media containing copper ions. The compound was purified from E. tasmaniensis strain Et1/99 supernatants by chromatography on Dowex-1 and Dowex-50 columns and identified by HPLC/MS and NMR analysis as 6-thioguanine (6TG). Its signal at 167 Da matched with the expected molecular mass. By random mutagenesis with miniTn5, we obtained mutants defective in the genes for pyrimidine and purine metabolism. A specific gene cluster with ycf genes described by us before, absent in the corresponding region of Escherichia coli, was identified in the genome sequence of three Erwinia species and named tgs region for thioguanine synthesis. Clones of the tgs gene cluster promoted 6TG synthesis and secretion in E. coli, when the bacteria were grown in minimal medium supplemented with amino acids. 6TG was bacteriostatic for E. coli and Salmonella typhimurium strains, with cell growth resumed after prolonged incubation. Similar results were obtained with P. agglomerans strains. Bacteria from the genus Pectobacterium were barely and Rahnella or Gibbsiella species were not inhibited by 6TG. Adenine and guanine relieved the toxic effect of 6TG on E. coli. Non-producing strains were fully virulent on host plants. 6TG synthesis may help erwinias to interfere with growth of some microorganisms in the environment.  相似文献   

7.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

8.

Lake Velencei is a shallow soda lake with extensive reed coverage. In this study, the bacterial communities of reed (Phragmites australis (Cav.) Trin. ex Steudel) rhizomes from healthy and declining stands were compared. Inner and outer rhizome surfaces were sampled. Samples were plated and isolated in September 1998 and June 1999. Phenotypic data of 371 bacterial strains were used for cluster analysis. Identification of phena was based on partial 16S rDNA sequence analysis of representative strains. Healthy reed stand rhizomes in fall 1998 were dominantly colonised by facultatively fermentative organisms, like Erwinia billingiae, Aeromonas sobria, Pantoea agglomerans, and Pseudomonas azotoformans. In the June 1999 sample, mainly Kocuria rosea and various Bacillus spp. dominated. In declining stands of September 1998, a saprotrophic community was found: Acinetobacter spp., Aeromonas hydrophila, Curtobacterium luteum, Agrobacterium vitis, and two further groups representing presumably new taxa. In June 1999, reed rhizomes were colonised by Kocuria rosea, but Dietzia maris and Bacillus cohnii could be isolated as well. Healthy and declining reed stand rhizomes can be distinguished based on the culturable bacterial community. No obligately plant pathogenic bacteria were found, however the possibility of a local, opportunistic bacterial invasion can not be ruled out (e.g. Curtobacterium). The presence of potentially beneficial bacterial species was demonstrated in the healthy reed rhizome rhizosphere (e.g. Pseudomonas azotoformans, Pantoea agglomerans).

  相似文献   

9.
Onion seeds treated with leachates of composts prepared from alfalfa and sunflower stalks, at the dosages of 10% and 20% respectively, were inoculated with Aspergillus niger van Tieghem, causal agent of onion black mold disease. The ability of the leachates to induce the production of antifungal compounds and to control black mold were tested at seedling and set stages. Leachates from both composts were able to reduce disease incidence in sets, but not disease severity in onion seedlings. Extracts from treated seedlings and sets were fractionated by thin layer chromatography for their content of antifungal compounds. There were no significant differences between the fractions of alfalfa and sunflower compost leachates in the inhibition of the mycelium growth of A. niger, with the exception of one fraction. The presence of fluorescent pseudomonads and Pantoae agglomerans [synonym: Erwinia herbicola (Löhnis)] bacteria was determined in both leachates. The population of P. agglomerans was higher in the sunflower compost leachate compared to the alfalfa leachate. The tested strains of both bacteria were able to inhibit mycelium growth of the fungal pathogen in agar tests. This study suggests the possible role of beneficial bacteria in the induction of antifungal compounds in onion against A. niger during seedling and set stages.  相似文献   

10.
Nine antibiotic producer strains of Erwinia herbicola (=Pantoea agglomerans), belonging to different groups, strongly inhibited growth of 21 streptomycin sensitive strains and 6 streptomycin resistant strains of E. amylovora. The antibacterial spectra of antibiotics produced by the tested strains of E. herbicola were mainly limited to E. amylovora and related tested species. The tested strains of E. amylovora that are resistant to streptomycin did not show cross-resistance to the different types of antibiotics produced by the tested strains of E. herbicola. The antibiotics produced by the different tested strains of E. herbicola did not exert any activity on tested fungi with the exception that strains Eh 153 and Eh 351 slightly inhibited the growth of Verticillium dahliae.  相似文献   

11.
Two strains of Erwinia herbicola effective in the biocontrol of E. amylovora, the etiological agent of fire blight, were screened for proferrioxamine siderophores by on-line liquid chromatography-electrospray mass spectrometry (LC-MS). Type strains of E. herbicola and Pantoea species were included in this study for taxonomic comparisons. Proferrioxamine profiles similar to that previously described for E. amylovora, including tri- and tetrameric hydroxamates and diaminopropane-containing proferrioxamines, were observed for P. agglomerans, but not for other E. herbicola-like species. Biocontrol activity was not correlated with proferrioxamine synthesis. The results of this study are consistent with the notion that some, but not all, biocontrol strains may inhibit E. amylovora via competition for iron. Further studies into the link between biocontrol of fire blight and siderophores are thus warranted. This study also revealed limitations of standard nutrient utilization and fatty acid profile analyses for the differentiation of P. agglomerans, P. dispersa and other E. herbicola-like species from each other. Given these limitations, LC-MS may become a much needed additional diagnostic tool for the identification of E. herbicola-like strains at the species level.  相似文献   

12.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae.  相似文献   

13.
14.
The growth and survival of pathogenic and nonpathogenic Pseudomonas syringae strains and of the nonpathogenic species Pantoea agglomerans, Stenotrophomonas maltophilia, and Methylobacterium organophilum were compared in the phyllosphere of bean. In general, the plant pathogens survived better than the nonpathogens on leaves under environmental stress. The sizes of the total leaf-associated populations of the pathogenic P. syringae strains were greater than the sizes of the total leaf-associated populations of the nonpathogens under dry conditions but not under moist conditions. In these studies the surface sterilants hydrogen peroxide and UV irradiation were used to differentiate cells that were fully exposed on the surface from nonexposed cells that were in “protected sites” that were inaccessible to these agents. In general, the population sizes in protected sites increased with time after inoculation of plants. The proportion of bacteria on leaves that were in protected sites was generally greater for pathogens than for nonpathogens and was greater under dry conditions than under moist conditions. When organisms were vacuum infiltrated into leaves, the sizes of the nonexposed “internal” populations were greater for pathogenic P. syringae strains than for nonpathogenic P. syringae strains. The sizes of the populations of the nonpathogenic species failed to increase or even decreased. The sizes of nonexposed populations following spray inoculation were correlated with the sizes of nonexposed, internal populations which developed after vacuum infiltration and incubation. While the sizes of the populations of the pathogenic P. syringae strains increased on leaves under dry conditions, the sizes of the populations of the nonpathogenic strains of P. syringae, P. agglomerans, and S. maltophilia decreased when the organisms were applied to plants. The sizes of the populations on dry leaves were also correlated with the sizes of the nonexposed populations that developed following vacuum infiltration. Although pathogenicity was not required for growth in the phyllosphere under high-relative-humidity conditions, pathogenicity apparently was involved in the ability to access and/or multiply in certain protected sites in the phyllosphere and in growth on dry leaves.  相似文献   

15.
Apogamous fern species are often difficult to distinguish from related species because of their continuous morphological variations. To clarify the genetic relationships among the members of the Dryopteris varia complex, we analyzed the nucleotide sequences of the plastid gene rbcL and the nuclear gene PgiC. We also analyzed the diploid sexual species D. caudipinna and D. chinensis, which have not been included in the complex, but were recently shown to be closely related to the complex in a molecular phylogenetic study. The PgiC sequences of the diploid sexual species, D. varia, D. saxifraga, D. sp. ‘protobissetiana’ (undescribed diploid sexual species), D. caudipinna, and D. chinensis, were well differentiated and hence designated A, B, C, D, and E, respectively. Thus, the PgiC constitution of apogamous species in the complex was as follows: D. bissetiana, B + C; D. kobayashii, B + C + E); D. pacifica, A + C, A + B + C, or A + C + D; D. sacrosancta, A + C + E; and D. saxifragivaria, B + C. These results suggest that these apogamous species are formed by hybridizations of species including not only the three diploid sexual species of the D. varia complex (A, B, and C) but also the two diploid sexual species D. caudipinna (D) and D. chinensis (E), which do not belong to the complex.  相似文献   

16.
This study reports the introduction of gfp marker in two endophytic bacterial strains (Pantoea agglomerans C33.1, isolated from cocoa, and Enterobacter cloacae PR2/7, isolated from citrus) to monitor the colonization in Madagascar perinwinkle (Catharanthus roseus). Stability of the plasmid encoding gfp was confirmed in vitro for at least 72 h of bacterial growth and after the colonization of tissues, under non-selective conditions. The colonization was observed using fluorescence microscopy and enumeration of culturable endophytes in inoculated perinwinkle plants that grew for 10 and 20 days. Gfp-expressing strains were re-isolated from the inner tissues of surface-sterilized roots and stems of inoculated plants, and the survival of the P. agglomerans C33:1gfp in plants 20 days after inoculation, even in the absence of selective pressure, suggests that is good colonizer. These results indicated that both gfp-tagged strains, especially P. agglomerans C33.1, may be useful tools to deliver enzymes or other proteins in plant.  相似文献   

17.
Aim: Development of a ‘miniprimer’ PCR assay for genotyping Pantoea stewartii subsp. stewartii, the causal agent of the Stewart’s bacterial wilt on maize. Methods and Results: Four 10‐nucleotide (10‐nt) ‘miniprimer’ sets were designed and evaluated in the presence of Titanium Taq DNA polymerase. Under optimal reaction conditions, the miniprimer pair Uni‐BacF‐10/Uni‐BacR‐10 reproducibly generated identical banding patterns among 10 strains of P. stewartii subsp. stewartii, different patterns from strains of P. stewartii subsp. indologenes, other Panteoa species, Clavibacter michiganensis, Pectobacterium spp., Pseudomonas spp. and other bacterial species. The amplicons of Pantoea stewartii subsp. stewartii were cloned and sequenced to identify genes or DNA fragments that are targeted by the miniprimer PCR assay. Of the 14 ‘clone types’ identified, sequences of a 1·23‐kb fragment had a 99·8% similarity to part of the Pantoea stewartii zeaxanthin diglucoside biosynthetic operon ( AY166713 ). Other dominant cloned fragments included a 411‐bp amplicon that exhibited 99·8% similarity to the psaU gene (syn:ysaU; GQ249669 ), a type III protein‐secretion system complex of P. stewartii subsp. stewartii strain DC283, and a 548‐bp fragment showed 63% homology to the Asp/Glu racemase encoding gene in Erwinia tasmaniensis strain ET1/99. Conclusion: The miniprimer PCR assay reported here is highly discriminatory and reproducible in genotyping Pantoea stewartii subsp. stewartii. Significance and Impact of the study: This miniprimer PCR assay could be a new reliable and rapid tool for fingerprinting the Stewart’s wilt pathogen of maize.  相似文献   

18.
A collection of 282 bacterial isolates from the rhizosphere and different organs of healthy field-grown grapevine plants was obtained and screened for their ability to protect grapevine leaves against Botrytis cinerea, the causal agent of gray mold. Twenty-six strains effectively controlled B. cinerea infections on leaves. After phenotypic and molecular analysis, seven strains were identified as Pseudomonas fluorescens PTA-268 and PTA-CT2, Bacillus subtilis PTA-271, Pantoea agglomerans PTA-AF1 and PTA-AF2, and Acinetobacter lwoffii PTA-113 and PTA-152. In vitro antifungal experiments showed that from these seven strains, only PTA-AF1 and PTA-CT2 exhibited a direct antagonism against B. cinerea. Furthermore, the biocontrol activity of the seven bacteria was associated with differential induction of defense-related responses lipoxygenase, phenylalanine ammonia-lyase and chitinase in grapevine leaves. Our results show that the selected bacteria can efficiently protect grapevine leaves against gray mold disease through an induction of plant resistance and in some cases by an additional antagonistic activity.  相似文献   

19.
核桃黑斑病拮抗放线菌WMF106的筛选、鉴定及防效   总被引:3,自引:3,他引:0  
【背景】核桃黑斑病是由2种病原菌引起的细菌性病害,目前缺乏有效的生物防治方法。【目的】从核桃树根际土壤中筛选对核桃黑斑病病原菌具有拮抗效果的放线菌菌株,为该病害生防菌剂的开发提供基础。【方法】采用稀释涂布法分离放线菌,并以病原菌野油菜黄单胞菌(Xanthomonas campestris pv. campestris)和成团泛菌(Pantoea agglomerans)作为指示菌,利用平板对峙法和改良牛津杯法筛选具有高拮抗活性的菌株,通过形态学特征、生理生化特性和16SrRNA基因序列分析确定其分类地位,并测定其无菌发酵液的抗菌谱和室内防效。【结果】筛选到一株对野油菜黄单胞菌和成团泛菌均有较强拮抗作用的放线菌菌株WMF106,该菌株对2种病原菌的抑菌圈直径分别为2.38 cm和1.82 cm,无菌发酵液对2种病原菌的抑菌圈直径分别为1.75 cm和1.55 cm。根据菌株形态学、生理生化特性及16SrRNA基因序列分析,将菌株WMF106鉴定为暗蓝色链霉菌(Streptomyces caeruleatus)。该菌株对尖孢镰刀菌、腐皮镰孢菌、辣椒刺盘孢菌、灰葡萄孢菌、胶孢炭疽菌5种植物病原菌及大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌、白色念珠菌、黑曲霉5种指示菌均有抑制作用,抗菌性能广谱高效,其无菌发酵液原液对离体叶片上由野油菜黄单胞菌和成团泛菌造成的核桃黑斑病防效分别为77.44%和58.33%。【结论】菌株WMF106可作为防治核桃黑斑病的生防材料,具有良好的开发价值和应用前景。  相似文献   

20.
Previous classification of Xanthomonas campestris has defined six pathovars (aberrans, armoraciae, barbareae, campestris, incanae, and raphani) that cause diseases on cruciferous plants. However, pathogenicity assays with a range of strains and different hosts identifies only three types of symptom: black rot, leaf spot and bacterial blight. These findings raise the question of the genetic relatedness between strains assigned to different pathovars or symptom phenotypes. Here we have addressed this issue by multilocus sequence analysis of 42 strains. The X. campestris species was polymorphic at the 8 loci analysed and had a high genetic diversity; 23 sequence types were identified of which 16 were unique. All strains that induce black rot (pathovars aberrans and campestris) were genetically close but split in two groups. Only three clonal complexes were found, all within pathovar campestris. The assignment of the genome-sequenced strain 756C to pathovar raphani suggested from disease symptoms was confirmed, although this group of strains was particularly polymorphic. Strains belonging to pathovars barbareae and incanae were closely related, but distinct from pathovar campestris. There is evidence of genetic exchanges of housekeeping genes within this species as deduced from a clear incongruence between individual gene phylogenies and from network structures from SplitsTree analysis. Overall this study showed that the high genetic diversity derived equally from recombination and point mutation accumulation. However, X. campestris remains a species with a clonal evolution driven by a differential adaptation to cruciferous hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号