首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of purified nitrate reductase (NR) and 1 mM NADH, illuminated pea chloroplasts catalysed reduction of NO3? to NH3 with the concomitant evolution of O2. The rates were slightly less than those for reduction of NO2? to NH3 and O2, evolution by chloroplasts in the absence of NR and NADH (ca 6 μg atoms N/mg Chl/hr). Illuminated chloroplasts quantitatively reduced 0.2 mM oxaloacetate (OAA) to malate. In the presence of an extrachloroplast malate-oxidizing system comprised of NAD-specific malate dehydrogenase (NAD-MDH), NAD, NR and NO3?, illuminated chloroplasts supported OAA-dependent reduction of NO3? to NH3 with the evolution of O2. The reaction did not proceed in the absence of any of these supplements or in the dark but malate could replace OAA. The results are consistent with the reduction of NO3?by reducing equivalents from H2O involving a malate/OAA shuttle. The ratios for O2, evolved: C4-acid supplied and N reduced: C4-acid supplied in certain experiments imply recycling of the C4-acids.  相似文献   

2.
Aquaspirillum magnetotacticum MS-1 grew microaerobically but not anaerobically with NO3 or NH4+ as the sole nitrogen source. Nevertheless, cell yields varied directly with NO3 concentration under microaerobic conditions. Products of NO3 reduction included NH4+, N2O, NO, and N2. NO2 and NH2OH, each toxic to cells at 0.2 mM, were not detected as products of cells growing on NO3. NO3 reduction to NH4+ was completely repressed by the addition of 2 mM NH4+ to the growth medium, whereas NO3 reduction to N2O or to N2 was not. C2H2 completely inhibited N2O reduction to N2 by growing cells. These results indicate that A. magnetotacticum is a microaerophilic denitrifier that is versatile in its nitrogen metabolism, concomitantly reducing NO3 by assimilatory and dissimilatory means. This bacterium appears to be the first described denitrifier with an absolute requirement for O2. The process of NO3 reduction appears well adapted for avoiding accumulation of several nitrogenous intermediates that are toxic to cells.  相似文献   

3.
Samples of sediment from Lake St. George, Ontario, Canada, were incubated in the laboratory under an initially aerobic gas phase and under anaerobic conditions. In the absence of added nitrate (NO3) there was O2-dependent production of nitrous oxide (N2O), which was inhibited by acetylene (C2H2) and by nitrapyrin, suggesting that coupled nitrification-denitrification was responsible. Denitrification of added NO3 was almost as rapid under an aerobic gas phase as under anaerobic conditions. The N2O that accumulated persisted in the presence of 0.4 atm of C2H2, but was gradually reduced by some sediment samples at lower C2H2 concentrations. Low rates of C2H2 reduction were observed in the dark, were maximal at 0.2 atm of C2H2, and were decreased in the presence of O2, NO3, or both. High rates of light-dependent C2H2 reduction occurred under anaerobic conditions. Predictably, methane (CH4) production, which occurred only under anaerobiosis, was delayed by added NO3 and inhibited by C2H2. Consumption of added CH4 occurred only under aerobic conditions and was inhibited by C2H2.  相似文献   

4.
Soil-N (NO3 ?) initiates as far as a threshold concentration is surpassed manifold physiological reactions on N2-fixation. Organic N and ammonium oxidised to NO3 ? means oxygen depletion. Plants suffering under O2 or infection stress start to excrete ethylene (C2H4). C2H4 widens the root intercellulars that O2-respiration will continue. Now microbes may more easily enter the plant interior by transforming the reached methionine into C2H4. Surplus nitrate and C2H4 inhibit nodulation of leguminous plants. Excess NO3 ? in the nodulesphere could be diminished by N2-fixing bacteria which in addition can denitrify or ammonify nitrate. Consequently, it was asked whether C2H4 interferes with the potential of N2-fixing bacteria to reduce nitrate. The groundnut-nodule isolate TNAU 14, from which it was known that it denitrifies and ammonifies nitrate, served as inoculum of a KNO3-mannitol-medium that was incubated under N2-, 1% (v/v) N2?C2H4-, and 1% (v/v) N2?C2H2-atmosphere in the laboratory. C2H2 was included into the experiments because it is frequently used to quantify N2-fixing potentials (acetylene reduction array, ARA). Gene-16S rDNA-sequencing and physiological tests revealed a high affiliation of strain TNAU 14 toRhizobium radiobacter andRhizobium tumefaciens. Strain TNAU 14 released N2O into the bottle headspace in all treatments, surprisingly significantly less in presence of C2H2. Nitrate-ammonification was even completely blocked by C2H2. C2H4, in contrast rather stimulated growth, denitrification, and nitrate-ammonification of strain TNAU 14 which consumed the released NH4 + during continuing incubation.  相似文献   

5.
Glucose transport by Hymenolepis diminuta was inhibited when Cl? in the bathing medium was replaced with acetate (C2H3O2Post?), but was unaffected when Cl? was replaced with SCN?. The relative effectiveness of the anions to inhibit influx of 7.4 mM Cl? in the presence of 1 mM glucose was SCN? > Cl? > C2H3O2Post?. Glucose stimulated the influxes of 120 mM Cl? and SCN?, but had little effect on 120 mM C2H3O2Post? influx. While the diffusion rates of the anions were C2H3O2Post? > SCN? = Cl?, the preference of the glucose transport system for the anions was SCN? > Cl? > C2H3O2Post?. Efflux of Cl? was not affected by the rate of glucose influx. Finally, microelectrode recordings of worms anesthetized with 2 mM arecoline revealed a transmembrane potential (TMP) of ?45 ± 3.6 mV (inside negative). Three to four minutes after addition of glucose (5 mM) there was a progressive hyperpolarization of the TMP to ?58 mV. A revised model of the glucose transport system that is consistent with previous observations on this organism is proposed.  相似文献   

6.
The cell-free preparations from autotrophieally grown Pseudomonas saccharophila catalyzed the process of electron transport from H2 or various other organic electron donors to either O2 or NO3? with concomitant ATP generation. The respective PO ratios with H2 and NADH were 0.63 and 0.73, the respective PNO3? ratios were 0.57 and 0.54. In contrast, the PO and PNO3? ratios with succinate were 0.18 and 0.11, respectively. ATP formation coupled to the oxidation of ascorbate, in the absence or presence of added N,N,N′,N′-tetramethyl-p-phenylenediamine or cytochrome c, could not be detected. Various uncouplers inhibited phosphorylation with either O2 or NO3? as terminal electron acceptors without affecting the oxidation of H2 or other substrates. The NADH oxidation at the expense of O2 or NO3? reduction as well as the associated phosphorylation were inhibited by rotenone and amytal. The aerobic and anaerobic H2 oxidation and coupled ATP synthesis, on the other hand, was unaffected by the flavoprotein inhibitors as well as by the NADH trapping system. The NADH, H2, and succinate-linked electron transport to O2 or NO3? and the associated phosphorylations were sensitive, however, to antimycin A or 2-n-nonyl-4-hydroxyquino-line-N-oxide, and cyanide or azide. The data indicated that although the phosphorylation sites 1 and II were associated with NADH oxidation by O2 or NO3?, the energy conservation coupled to H2 oxidation under aerobic or anaerobic conditions appeared to involve site II only.  相似文献   

7.
Mahon JD 《Plant physiology》1977,60(6):812-816
Inoculated pea plants (Pisum sativum L.) were grown with N-free nutrients in a controlled environment room and rates of respiratory CO2 evolution and C2H2 reduction by the intact nodulated roots were determined. Experiments followed changes related to diurnal cycles, light and dark treatments, partial defoliation, aging of plants and NH4NO3 addition. In all experiments, changes in C2H2 reduction were associated with parallel changes in the respiration rate, although in all but the defoliation experiment there was a basal level of respiration which was independent of the rate of C2H2 reduction. In conditions which affected growth or plant size as well as C2H2 reduction, respiration changed by an average of 0.42 mg CO2 (μmol C2H2 reduced)−1. However, some treatments decreased C2H2 reduction without greatly changing the growth and in these conditions respiration was decreased by an average of 0.27 mg CO2 (μmol C2H2 reduced)−1. While this value may also include some respiration associated with other processes, it is proposed that it more closely estimates respiration directly associated with energy utilization for acetylene reduction; whereas the higher value includes respiration related to maintenance and growth processes as well.  相似文献   

8.
Respiration-driven proton translocation has been studied with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing H2 during reduction of O2, NO?3, NO?2 or N2O. A simplified scheme of anaerobic electron transport and associated proton translocation is shown that is consistent with the measured H+oxidant ratios. Furthermore, the kinetics and energetics of NO?3 uptake in whole cells of P. denitrificans were studied. For this purpose, we measured H2 consumption or N2O production after addition of NO?3 to a cell suspension, which indirectly gave information about uptake (and reduction) of NO?3. It was found that a lag phase in H2 consumption or N2O production appeared whenever the membrane potential was dissipated by addition of thiocyanate, carbonyl cyanide m-chlorophenylhydrazone or triphenyl-methylphosphonium bromide. However, these lag phases were not observed when NO?2 was present at the moment of introduction of NO?3. On the basis of these findings we conclude that there are two uptake systems for NO?3. One system is dependent on the proton-motive force and is probably used for initiation of NO?3 uptake. The other is an NO?3NO?2 antiport and its function is to take over NO?3 uptake from the first system.  相似文献   

9.
Iron-exposed murine macrophages have a modified bactericidal activity as shown by previous observations. In order to assess the role of iron in macrophage activation, as measured by free radical production and by intracellular bacterial killing, murine peritoneal macrophages were cultivated in the presence of various sources of iron, human iron-saturated transferrin and ammonium ferric citrate, or iron chelators, Desferal, and human Apo-transferrin, and were infected with an enteropathogenic strain ofE. coli. The release of nitrite (NO2 ?), and the production of superoxide anion (O2 ?) and hydrogen peroxide (H2O2) by the phagocytes were measured and compared to the production by uninfected macrophages. The synergistic action with murine r.IFN-γ was also studied in the radical production reaction and for the bactericidal activity of macrophages. Our results show that in vitro phagocytosis ofE. coli induced elevated production of NO2 ? and H2O2 by macrophages, and that oxygen derivatives were released independently of the presence of added iron or chelator. Despite a phagocytosis-related enhancement of NO2 ? release, reactive nitrogen intermediates (RNI) are not directly involved in the bactericidal mechanism, as revealed by increased intracellular killing owing to RNI inhibitors. Moreover, bacterial killing may depend on oxygen derivatives, as suggested by the effect of the antioxidant sodium ascorbate leading to both a diminished H2O2 production and a decreased bactericidal activity of macrophages.  相似文献   

10.
Mahon JD 《Plant physiology》1977,60(6):817-821
Pisum sativum L. cv. Trapper plants were inoculated and grown in a controlled environment on N-free nutrient solution. After 4 weeks N was supplied to treatment plants as NH4NO3, KNO3, or NH4Cl and rates of C2H2 reduction, root + nodule respiration, and leaf photosynthesis were determined 1 week later. The increase in respiration per unit of C2H2 reduction was not affected by either the form of N added or the light conditions during growth, although the basal respiration rate with no C2H2 reduction increased with irradiance level. The mean regression coefficient from plots of respiration versus C2H2 reduction was 0.23 + 0.04 (P [unk] .01) mg of CO2 (μmol of C2H2 reduced)−1 which was very similar to the value for the coefficient of respiration associated with nitrogenase activity estimated by subtracting growth and maintenance respiration. Since the rate of N accumulation in N-free nutrient conditions was proportional to the rate of C2H2 reduction, it appears that the method gives a true estimate of the energy requirements for N fixation which for these conditions was equivalent to 17 grams of carbohydrate consumed per gram of N fixed.  相似文献   

11.
Denitrification by Chromobacterium violaceum   总被引:2,自引:0,他引:2       下载免费PDF全文
One host (Rana catesbiana)-associated and two free-living mesophilic strains of bacteria with violet pigmentation and biochemical characteristics of Chromobacterium violaceum were isolated from freshwater habitats. Cells of each freshly isolated strain and of strain ATCC 12472 (the neotype strain) grew anaerobically with glucose as the sole carbon and energy source. The major fermentation products of cells grown in Trypticase soy broth (BBL Microbiology Systems, Cockeysville, Md.) supplemented with glucose included acetate, small amounts of propionate, lactate, and pyruvate. The final cell yield and culture growth rate of each strain cultured anaerobically in this medium increased approximately twofold with the addition of 2 mM NaNO3. Final growth yields increased in direct proportion to the quantity of added NaNO3 over the range of 0.5 to 5 mM. Each strain reduced NO3, producing NO2, NO, and N2O. NO2 accumulated transiently. With 2 mM NaNO3 in the medium, N2O made up 85 to 98% of the N product recovered with each strain. N-oxides were recovered in the same quantity and distribution whether 0.01 atm (ca. 1 kPa) of C2H2 (added to block N2O reduction) was present or not. Neither N2 production nor gas accumulation was detected during NO3 reduction by growing cells. Cell growth in media containing 0.5 to 5 mM NaNO2 in lieu of NaNO3 was delayed, and although N2O was produced by the end of growth, NO2 -containing media did not support growth to an extent greater than did medium lacking NO3 or NO2. The data indicate that C. violaceum cells ferment glucose or denitrify, terminating denitrification with the production of N2O, and that NO2 reduction to N2O is not coupled to growth but may serve as a detoxification mechanism. No strain detectably fixed N2 (reduced C2H2).  相似文献   

12.
An anaerobic, H2-utilizing bacterium, strain RD-1, was isolated from the highest growth-positive dilution series of a root homogenate prepared from the sea grass Halodule wrightii. Cells of RD-1 were gram-positive, spore-forming, motile rods that were linked by connecting filaments. Acetate was produced in stoichiometries indicative of an acetyl coenzyme A (acetyl-CoA) pathway-dependent metabolism when RD-1 utilized H2-CO2, formate, lactate, or pyruvate. Growth on sugars or ethylene glycol yielded acetate and ethanol as end products. RD-1 grew at the expense of glucose in the presence of low initial concentrations (up to 6% [vol/vol]) of O2 in the headspace of static, horizontally incubated culture tubes; the concentration of O2 decreased during growth in such cultures. Peroxidase, NADH oxidase, and superoxide dismutase activities were detected in the cytoplasmic fraction of cells grown in the presence of O2. In comparison to cultures incubated under strictly anoxic conditions, acetate production decreased, higher amounts of ethanol were produced, and lactate and H2 became significant end products when RD-1 was grown on glucose in the presence of O2. Similarly, when RD-1 was grown on fructose in the presence of elevated salt concentrations, lower amounts of acetate and higher amounts of ethanol and H2 were produced. When the concentration of O2 in the headspace exceeded 1% (vol/vol), supplemental H2 was not utilized. The 16S rRNA gene of RD-1 had a 99.7% sequence similarity to that of Clostridium glycolicum DSM 1288T, an organism characterized as a fermentative anaerobe. Comparative experiments with C. glycolicum DSM 1288T demonstrated that it had negligible H2- and formate-utilizing capacities. However, carbon monoxide dehydrogenase was detected in both RD-1 and C. glycolicum DSM 1288T. A 91.4% DNA-DNA hybridization between the genomic DNA of RD-1 and that of C. glycolicum DSM 1288T confirmed that RD-1 was a strain of C. glycolicum. These results indicate that (i) RD-1 metabolizes certain substrates via the acetyl-CoA pathway, (ii) RD-1 can tolerate and consume limited amounts of O2, (iii) oxic conditions favor the production of ethanol, lactate, and H2 by RD-1, and (iv) the ability of RD-1 to cope with limited amounts of O2 might contribute to its survival in a habitat subject to daily gradients of photosynthesis-derived O2.  相似文献   

13.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

14.
Soybeans grown with 2 millimolar NO3, which optimized apparent N2 fixation by Rhizobium symbionts, showed significantly different rates of apparent photosynthesis and C2H2 reduction during seedling development at two irradiances. Those physiological processes were lower for several weeks in plants grown at 1,500 microeinsteins per meter2 per second than in those exposed to 700 microeinsteins per meter2 per second. The irradiance-induced retardation was evident in short-term rates of apparent photosynthesis and N2 fixation, as well as in measures of dry matter and total N accumulation. In spite of their previously inhibited development, plants grown at 1,500 microeinsteins per meter2 per second were indistinguishable by day 28 from those exposed to 700 microeinsteins per meter2 per second in terms of whole-shoot CO2-exchange rate; by day 35 they were identical in terms of whole-plant C2H2-reduction rate. On day 38 there was no significant difference in dry weight or N content between treatments. Shifting plants between irradiance treatments on day 21 showed that the higher irradiance also had a short-term inhibitory effect on C2H2 reduction. The fact that 16 millimolar NO3 prevented the continuous exposure to 1,500 microeinsteins per meter2 per second from inhibiting apparent photosynthesis suggested that seedlings grown on 2 millimolar NO3 with Rhizobium were N-limited. Although rates of apparent photosynthesis were similar by day 28, the additional week required to produce equal rates of apparent N2 fixation between irradiance treatments showed that physiological adaptations of shoots, as well as photosynthesis per se, can affect root nodule activity.  相似文献   

15.
Regulation of H2 utilization, as monitored by the hydrogenase-mediated3H2 exchange reaction, was examined among phytoplankton communitiesin situ and populations in culture. During a 2-year study in the Chowan River, North Carolina, at least 2 major groups of phytoplankton dominated3H2 exchange rates. They included N2 fixing cyanobacteria and NO3 }- utilizing genera. Utilization of3H2 by N2 fixers was mainly dark-mediated, whereas3H2 utilization associated with periods of NO3 }- abundance revealed an increasing dependence on light. Inhibitors of N2 fixation (C2H2 and NH4 +) negatively affected3H2 utilization, substantiating previous findings that close metabolic coupling of both processes exists among N2 fixing cyanobacteria. Conversely, NO3 }- stimulated3H2 utilization among N2 and non-N2 fixing genera, particularly under illuminated conditions. A variety of environmental factors were shown to control3H2 exchange. In addition to the nitrogen sources discussed above, dissolved O2, photosynthetically available radiation (PAR), temperature, and pH changes altered3H2 exchange rates. It is likely that other factors not addressed here could also affect3H2 exchange rates. At least 2 ecological benefits from H2 utilization in natural phytoplankton can be offered. They include the simultaneous generation of adenosine triphosphate (ATP) and consumption of O2 during the oxidation of H2 via an oxyhydrogen or “Knallgas” reaction. Both processes could help sustain phytoplankton, and particularly cyanobacterial, bloom intensity under natural conditions when O2 supersaturation is common in surface waters. H2 utilization appeared to be a general feature of natural and laboratory phytoplankton populations. The magnitudes of3H2 utilization rates were directly related to community biomass. Although it can be shown that utilization rates are controlled by specific environmental factors, the potential relationships between H2 utilization and phytoplankton primary production remain poorly understood.  相似文献   

16.
The effect of nutrient solutions with certain essential elements lacking, on oxidation reduction potential (RP) of the first leaf was examined in two cultivars of barley seedlings NO3 ? and K+ decreasedRP considerably, PO 4 3? did not. The effect of NO3 ? and K+ was dependent. on the illuminance. Under glasshouse conditions, the increased level of NO3 ? and K+ did not cause any change ofRP. In field conditions, the increased supply of nitrogen fertilizers resulted in a lowerRP in leaves at ear emergence and a higher yield. The use ofRP measurement in leaves for the estimation of the effect of mineral nutrition on plants is discussed.  相似文献   

17.
The ability of Salvinia natans (L.) All. to tolerate growth in oxic, hypoxic and anoxic nutrient solutions when supplied with either NH4+ or NO3? were studied in the laboratory to test the hypothesis that inorganic N-source affects the response of the plants to O2 deprivation. The relative growth rate (RGR) was significantly reduced in the anoxic treatment, but in the hypoxic treatment RGR was only slightly affected. The NH4+ fed plants generally had a higher shoot to root ratio than the NO3? fed plants, and highest in the anoxic treatment. Plants had more roots and larger leaves when supplied with NH4+ as compared with NO3?, particularly in the oxic treatment, and root length was most affected by O2 deprivation for NO3? fed plants. Cell walls in the endodermis, the bundle sheath and the cortex adjacent to endodermis developed thickened sclerenchymatous walls when deprived of O2, and more so in plants supplied with NO3?. Plants lost chlorophylls, had lower rates of photosynthetic electron transport (ETRmax) and lower quantum yields (Fv/Fm ratios) when grown in anoxic solutions, and the negative effects were mildest for NO3? fed plants suggesting that NO3? may be used as an alternative e?-acceptor in non-cyclic electron transport in the chloroplasts. Overall S. natans grew best on NH4+, but it also grew well on NO3?, and the O2 stress symptoms differed somewhat between NH4+ fed and NO3? fed plants. However, because N-form itself significantly influenced morphology and cell metabolism, it was impossible to conclusively identify the role of N-form for the O2 stress reactions. S. natans is not well-adapted to grow in O2 deficient waters and will not tolerate completely anoxic conditions as will prevail in waters receiving high loadings of organic pollutants such as livestock wastewater.  相似文献   

18.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

19.
Microzonation of denitrification was studied in stream sediments by a combined O2 and N2O microsensor technique. O2 and N2O concentration profiles were recorded simultaneously in intact sediment cores in which C2H2 was added to inhibit N2O reduction in denitrification. The N2O profiles were used to obtain high-resolution profiles of denitrification activity and NO3 distribution in the sediments. O2 penetrated about 1 mm into the dark-incubated sediments, and denitrification was largely restricted to a thin anoxic layer immediately below that. With 115 μM NO3 in the water phase, denitrification was limited to a narrow zone from 0.7 to 1.4 mm in depth, and total activity was 34 nmol of N cm−2 h−1. With 1,250 μM NO3 in the water, the denitrification zone was extended to a layer from 0.9 to 4.8 mm in depth, and total activity increased to 124 nmol of N cm−2 h−1. Within most of the activity zone, denitrification was not dependent on the NO3 concentration and the apparent Km for NO3 was less than 10 μM. Denitrification was the only NO3-consuming process in the dark-incubated stream sediment. Even in the presence of C2H2, a significant N2O reduction (up to 30% of the total N2O production) occurred in the reduced, NO3-free layers below the denitrification zone. This effect must be corrected for during use of the conventional C2H2 inhibition technique.  相似文献   

20.
NO3?-dependent O2 in synchronous Scenedesmus obtusiusculus Chod. in the absence of CO2 is stoichiometric with NH4+ excretion, indicating a close coupling of NO3? reduction to non-cyclic electron flow. Also in the presence of CO2, NO3? stimulates O2 evolution as manifested by an increase in the O2/CO2 ratio from 0.96 to 1.11. This quotient was increased to 1.36 by addition of NO2?, without competitive interaction with CO2 fixation, indicating that the capacity for non-cyclic electron transport at saturating light is non-limiting for simultaneous reduction of NO3? and CO2 at high rates. During incubation with NO3?+ CO2, no NH4+ is released to the outer medium, whereas during incubation with NO2?+ CO2, excess NH4+ is formed and excreted. NO3? uptake is stimulated by CO2, and this stimulation is also significant when the cellular energy metabolism is restricted by moderate concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, whereas NO3? uptake in the absence of CO2 is severely inhibited by the uncoupler. Also under energy-restricted conditions NO3? uptake is not competitive with CO2 fixation. Antimycin A is inhibitory for NO3? uptake in the absence of CO2, and there is no enhancement of NO3? uptake by CO2 in the presence of antimycin A. It is assumed that the energy demand for NO3? uptake is met by energy fixed as triosephosphates in the Calvin cycle. Antimycin A possibly affects the transfer of reduced triose phosphates from the chloroplast to the cytoplasm. Active carbon metabolism also seems to exert a control effect on NO3? assimilation, inducing complete incorporation of all NO3? taken up into amino acids. This control effect is not functional when NO2? is the nitrogen source. Active carbon metabolism thus seems to be essential both for provision of energy for NO3? uptake and for regulation of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号