首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

2.
1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.  相似文献   

3.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

4.
Liver from Squalus acanthias (spiny dogfish), a representative elasmobranch, contains approximately 1.4 units (mumol/min) of phosphoenolpyruvate carboxykinase activity per gram and approximately 90% of the total units of activity are localized in the mitochondria. The mitochondrial phosphoenolpyruvate carboxykinase was isolated and characterized. The purified enzyme has properties generally similar to those found in mammalian and avian species. The enzyme has a molecular weight of approximately 70,000 and exists in a functional state as a monomer. The isolated enzyme displays a dual cation requirement (e.g., 6 mM Mg2+ and 10 microM Mn2+) for maximal activity; very little activity is observed when Mg2+ is present alone, and the maximal activity attained with Mn2+ alone (millimolar concentrations required) is significantly less than that observed under optimal conditions with both cations present. When assayed in the direction of oxalacetate formation there is a lag in product formation with time; the lag can be eliminated by the presence of 50 microM GTP (product). The Km for substrates is not affected by Mn2+ concentration, suggesting that the role of Mn2+ may not be related to substrate binding. The apparent Km for phosphoenolpyruvate (approximately 1 mM) is substantially higher than that reported for phosphoenolpyruvate carboxykinase from other species. The activity of phosphoenolpyruvate carboxykinase is increased 70% by physiological concentrations of urea. Maximal velocity of the reaction in the direction of oxalacetate formation is approximately half that of the reverse reaction.  相似文献   

5.
It has been a common practice to assay phosphoenolpyruvate carboxylase (PEPC) under high, nonphysiological concentrations of Mg(2+) and bicarbonate. We have performed kinetic studies on the enzyme from maize (Zea mays) leaves at near physiological levels of free Mg(2+) (0.4 mM) and bicarbonate (0.1 mM), and found that both the nonphosphorylated and phosphorylated enzymes exhibited a high degree of cooperativity in the binding of phosphoenolpyruvate, a much lower affinity for this substrate and for activators, and a greater affinity for malate than at high concentrations of these ions. Inhibition of the phosphorylated enzyme by malate was overcome by glycine or alanine but not by glucose-6-phosphate, either in the absence or presence of high concentrations of glycerol, a compatible solute. Alanine caused significant activation at physiological concentrations, suggesting a pivotal role for this amino acid in regulating maize leaf PEPC activity. Our results showed that the maximum enzyme activity attainable in vivo would be less than 50% of that attainable in vitro under optimum conditions. Therefore, the high levels of PEPC protein in the cytosol of C(4) mesophyll cells might be an adaptation for sustaining the steady-state rate of flux through the photosynthetic CO(2) assimilation pathway despite the limitations imposed by the PEPC kinetic properties and the conditions of its environment.  相似文献   

6.
Phenylphosphate, a structural analog of phosphoenolpyruvate (PEP), was found to be an activator of phosphoenolpyruvate carboxylase (PEP carboxylase) purified from maize leaves. This finding suggested the presence in the enzyme of a regulatory site, to which PEP could bind. We carried out kinetic studies on this enzyme using controlled concentrations of free PEP and of Mg-PEP complex and developed a theoretical kinetic model of the reaction. In summary, the main conclusions drawn from our results, and taken as assumptions of the model, were the following: (i) The affinity of the active site for the complex Mg-PEP is much higher than that for free PEP and Mg2+ ions, and therefore it can be considered that the preferential substrate of the PEP-catalyzed reaction is Mg-PEP. (ii) The enzyme has a regulatory site specific for free PEP, to which Mg2+ ions can not bind. (iii) The binding of free PEP, or an analog molecule, to this regulatory site yields a modified enzyme that has much lower apparent Km values and apparent Vmax values than the unmodified enzyme. So, free PEP behaves as an excellent activator of the reaction at subsaturating substrate concentrations, and as an inhibitor at saturating substrate concentrations. These findings may have important physiological implications on the regulation of the PEP carboxylase in vivo activity and, consequently, of the C4 pathway, since increased reaction rates would be obtained when the concentration of PEP rises, even at limiting Mg2+ concentrations.  相似文献   

7.
The effect of cyclic-AMP-dependent phosphorylation on the activity of isolated pig liver pyruvate kinase was studied. It was found that the major kinetic effect of the phosphorylation was to reduce the affinity for the substrate phosphoenolpyruvate, K0.5 for this substrate increasing from 0.3 to 0.9 mM upon phosphorylation. The cooperative effect with phosphoenolpyruvate was enhanced, the Hill constant nH increasing concomitantly from 1.1 to 1.5. V was unaltered. The change in activity occurred in parallel with the phosphate incorporation, except during the initial part of the reaction, when inactivation was correspondingly slower. The affinity for the second substrate ADP was unchanged, with an apparent Km of 0.3 mM at saturating concentration of phosphoenolpyruvate. Likewise, the requirement for potassium was unaffected, whereas the phosphoenzyme required a higher concentration of magnesium ions for maximal activity, compared with the control enzyme. The inhibitory effect of the phosphorylation was counteracted by positive effectors, fructose 1,6-biphosphate in micromolar concentrations completely activated the phosphoenzyme, resulting in an enzyme with properties similar to the fructose 1,6-biphosphate-activated unphosphorylated enzyme, with K0.5 for phosphoenolpyruvate about 0.025 mM and with a Hill constant of 1.1. Hydrogen ions were also effective in activating the phosphoenzyme. Thus, when pH was lowered from 8 to 6.5 the inhibition due to phosphorylation was abolished. The phosphoenzyme was sensitive to further inhibition by negative effectors such as ATP and alanine. 2 mM ATP increased K0.5 for phosphoenolpyruvate to 1.5 mM and nH to 2.3. The corresponding values with alanine were 1.3 mM and 1.9. Phosphorylation is thought to be an additional mechanism of inhibition of the enzyme under gluconeogenetic conditions.  相似文献   

8.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

9.
The phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) of the epimastigote form of Trypanosoma (Schizotrypanum) cruzi has been purified to homogeneity. The enzyme is composed of two apparently identical 42,000 +/- 500 subunits, is highly specific for adenine nucleotides, and has a strict requirement of Mn2+ ions for activity; the activation of the enzyme by ionic Mn2+ reveals that one Mn2+ ion required for each 42,000 subunit. Hyperbolic kinetics are observed for all substrates in the carboxylation reaction with Km (phosphoenolpyruvate) of 0.36 +/- 0.08 mM, Km (HCO-3) of 3.7 +/- 0.2 mM, and Km (Mg-ADP) of 39 +/- 1 microM. In the decarboxylation reaction the kinetics with respect to oxalacetic acid are also hyperbolic with a Km of 27 +/- 3 microM, but towards Mg-ATP there is a biphasic response: hyperbolic at low (less than 250 microM) concentrations with a Km of 39 +/- 1 microM, but at higher concentrations the nucleotide produces a strong inhibition of the enzyme activity. This inhibition is also observed with Mg-GTP and Mg-ITP which are not substrates of the reaction. The results are consistent with an important regulatory function of the enzyme in the amino-acid catabolism of T. cruzi.  相似文献   

10.
The nuclei of Plasmodium yoelii nigeriensis contain an enzyme, ADP-ribosyltransferase, that will incorporate the ADP-ribose moiety of NAD+ into acid-insoluble product. The time, pH and temperature optima of this incorporation are 30 min, 8.5 and 25 degrees C respectively. Maximum stimulation of the enzyme activity is obtained with 1.0 mM-dithiothreitol or 2.0 mM-2-mercaptoethanol. Ca2+ and Mg2+ ions at optimum concentrations of 5 mM and 10 mM respectively stimulated the activity of the enzyme by 21% and 91%. The enzyme activity is, however, inhibited by 24% in the presence of 10 mM-MnSO4. The substrate, NAD+, exhibits an apparent Km of 500 microM, and the activity of the enzyme is inhibited by four chemical classes of inhibitors: nicotinamides, methylxanthines, thymidine and aromatic amides. The inhibitors are effective in the following increasing order: nicotinamide less than 3-aminobenzamide less than thymidine less than 5-methylnicotinamide less than theophylline less than m-methoxybenzamide less than theobromine. The enzyme activity is also inhibited by some DNA-binding anti-malarial drugs.  相似文献   

11.
The kinetics of rat liver L-type pyruvate kinase (EC 2.7.1.40), phosphorylated with cyclic AMP-stimulated protein kinase from the same source, and the unphosphorylated enzyme have been compared. The effects of pH and various concentrations of substrates, Mg2+, K+ and modifiers were studied. In the absence of fructose 1, 6-diphosphate at pH 7.3, the phosphorylated pyruvate kinase appeared to have a lower affinity for phosphoenolpyruvate (K0.5=0.8 mM) than the unphosphorylated enzyme (K0.5=0.3 mM). The enzyme activity vs. phosphoenolpyruvate concentration curve was more sigmoidal for the phosphorylated enzyme with a Hill coefficient of 2.6 compared to 1.6 for the unphosphorylated enzyme. Fructose 1, 6-diphosphate increased the apparent affinity of both enzyme forms for phosphoenolpyruvate. At saturating concentrations of this activator, the kinetics of both enzyme forms were transformed to approximately the same hyperbolic curve, with a Hill coefficient of 1.0 and K0.5 of about 0.04 mM for phosphoenolpyruvate. The apparent affinity of the enzyme for fructose 1, 6-diphosphate was high at 0.2 mM phosphoenolpyruvate with a K0.5=0.06 muM for the unphosphorylated pyruvate kinase and 0.13 muM for the phosphorylated enzyme. However, in the presence of 0.5 mM alanine plus 1.5 mM ATP, a higher fructose 1, 6-diphosphate concentration was needed for activation, with K0.5 of 0.4 muM for the unphosphorylated enzyme and of 1.4 muM for the phosphorylated enzyme. The results obtained strongly indicate that phosphorylation of pyruvate kinase may also inhibit the enzyme in vivo. Such an inhibition should be important during gluconeogenesis.  相似文献   

12.
Acetylcholinesterase (AChE) activity has been determined using homogenized rat diaphragm and soluble AChE from the eel Electrophorus electricus, using as a substrate different amounts of acetylthiocholine in the presence or absence of 115 mM NaCl or LiCl. With LiCl the KM values derived from Lineweaver-Burk plots are found to be 470-650 and 1045-1425 microM without cations or with NaCl. The cooperativity of the enzyme is increased when cations are added to the homogenate, as demonstrated by changes of the Hill coefficient. With soluble AChE, only Li+ is able to produce this effect. Preincubation of the soluble enzyme at low pH (5.5) and a change to a higher value (8.7-9.4) causes a decrease of the Hill coefficient with Li+ only; this effect is not detected using the homogenate. Our results suggest the following. (i) Li+ may neutralize negative charges of AChE more successfully than does Na+, resulting in higher activity, stabilization, and cooperativity of the enzyme. (ii) The KM values calculated at high substrate concentrations (greater than 200 microM) indicate that the substrate affinity of AChE can be increased only by Li+ binding on the enzyme. (iii) Changes in pH can modulate the cooperativity and may denature allosteric sites on the enzyme that bind Li+. (iv) Membrane, cations and (or) cellular factor(s) may regulate the cooperativity and substrate affinity of AChE, when they have been affected by pH changes.  相似文献   

13.
1. Co2+ is not a cofactor for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe). 2. The following analogues of phosphoenolpyruvate were tested as inhibitors of 3-deoxy-D-arabinoheptolosonate-7-phosphate synthetase(phe): pyruvate, lactate, glycerate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-methylphosphoenolpyruvate, 3-ethylphosphoenolpyruvate and 3,3-demethylphosphoenolpyruvate. The rusults obtained indicate that the binding of phosphoenolpyruvate to the enzyme requires a phosphoryl group on the C-2 position of the substrate and one free hydrogen atom at the C-3 position. 3. The dead-end inhibition pattern observed with the substrate analogue 2-phosphoglycerate when either phosphoenolpyruvate or erythrose 4-phosphate was the variable substrate is inconsistent with a ping-pong mechanism and indicates that the reaction mechanism for this enzyme must be sequential. The following kinetic constants were determined:Km for phosphoenolpyruvate, 0.08 +/- 0.04 mM; Km for erythrose 4-phosphate, 0.9 +/- 0.3 mM; K is for competitive inhibition by 2-phosphoglycerate with respect to phosphoenolpyruvate, 1.0 +/- 0.1 mM. 4. The enzyme was observed to have a bell-shaped pH PROFILE WITH A PH OPTIMUM OF 7.0. The effects of pH ON V and V/(Km for phosphoenolpyruvate) indicated that an ionizing group of pKa 8.0-8.1 is involved in the catalytic activity of the enzyme. The pKa of this group is unaffected by the binding of phosphoenolpyruvate.  相似文献   

14.
1. The kinetics of the reaction catalysed by fructose bisphosphatase have been studied at pH 7.2 and at pH 9.5. The activity of the enzyme was shown to respond sigmoidally to increasing concentrations of free Mg2+ or Mn2+ ions at pH 7.2, whereas the dependence was hyperbolic at pH 9.5. At both pH values the enzyme responded hyperbolically to increasing concentrations of fructose 1,6-bisphosphate, although inhibition was observed at higher concentrations of this substrate. This high substrate inhibition was shown to be partial in nature and the enzyme was found to be more sensitive at pH 7.2 than at pH 9.5. 2. The properties of the enzyme, are consistent with the enzyme obeying either a random-order equilibrium mechanism or a compulsory-order steady-state mechanism in which fructose bisphosphate binds to the enzyme before the cation. 3. Reaction of the enzyme with a four-fold molar excess of p-chloromercuribenzoate caused activation of the enzyme when its activity was assayed in the presence of MN2+ ions but inhibition when Mg2+ ions were used. Higher concentrations of p-chloromercuribenzoate caused inhibition. This activation at low p-chloromercuribenzoate concentrations, and the reaction of 5,5'-dithio-bis(2-nitrobenzoate) with the four thiol groups in the enzyme that reacted rapidly with this reagent, were prevented or slowed by the presence of inhibitory, but not non-inhibitory, concentrations of fructose bisphosphate. After reaction with a four-fold molar excess of p-chloromercuribenzoate the enzyme was no longer sensitive to high substrate inhibition by fructose bisphosphate.  相似文献   

15.
In Pseudomonas aeruginosa, the effect of different cations on the acid phosphatase activity was studied in order to acquire more information related to a previously proposed mechanism, involving the coordinated action of this enzyme with phospholipase C. Although the natural substrate of this enzyme is phosphorylcholine, in order to avoid the possible interaction of its positive charge and those of the different cations with the enzyme molecule, the artificial substrate p-nitrophenylphosphate was utilized. Kinetic studies of the activation of acid phosphatase (phosphorylcholine phosphatase) mediated by divalent cations Mg2+, Zn2+ and Cu2+ revealed that all these ions bind to the enzyme in a compulsory order (ordered bireactant system). The Km values obtained for p-NPP in the presence of Mg2+, Zn2+ and Cu2+ were 1.4 mM, 1.0 mM and 3.5 mM, respectively. The KA values for the same ions were 1.25 mM, 0.05 mM and 0.03 mM, respectively. The Vmax obtained in the presence of Cu2+ was about twofold higher than that obtained in the presence of Mg2+ or Zn2+. The inhibition observed with Al3+ seems to be a multi-site inhibition. The K'app and n values, from the Hill plot, were about 0.25 mM and 4.0 mM, respectively, which were independent of the metal ion utilized as activator. It is proposed that the acid phosphatase may exert its action under physiological conditions, depending on the availability of either one of these metal ions.  相似文献   

16.
Kinetic studies on the regulation of rabbit liver pyruvate kinase   总被引:5,自引:5,他引:0  
Two kinetically distinct forms of pyruvate kinase (EC 2.7.1.40) were isolated from rabbit liver by using differential ammonium sulphate fractionation. The L or liver form, which is allosterically activated by fructose 1,6-diphosphate, was partially purified by DEAE-cellulose chromatography to give a maximum specific activity of 20 units/mg. The L form was allosterically activated by K(+) and optimum activity was recorded with 30mm-K(+), 4mm-MgADP(-), with a MgADP(-)/ADP(2-) ratio of 50:1, but inhibition occurred with K(+) concentrations in excess of 60mm. No inhibition occurred with either ATP or GTP when excess of Mg(2+) was added to counteract chelation by these ligands. Alanine (2.5mm) caused 50% inhibition at low concentrations of phosphoenolpyruvate (0.15mm). The homotropic effector, phosphoenolpyruvate, exhibited a complex allosteric pattern (n(H)=2.5), and negative co-operative interactions were observed in the presence of low concentrations of this substrate. The degree of this co-operative interaction was pH-dependent, with the Hill coefficient increasing from 1.1 to 3.2 as the pH was raised from 6.5 to 8.0. Fructose 1,6-diphosphate interfered with the activation by univalent ions, markedly decreased the apparent K(m) for phosphoenolpyruvate from 1.2mm to 0.2mm, and transformed the phosphoenolpyruvate saturation curve into a hyperbola. Concentrations of fructose 1,6-diphosphate in excess of 0.5mm inhibited this stimulated reaction. The M or muscle-type form of the enzyme was not activated by fructose 1,6-diphosphate and gave a maximum specific activity of 0.3 unit/mg. A Michaelis-Menten response was obtained when phosphoenolpyruvate was the variable substrate (K(m)=0.125mm), and this form was inhibited by ATP, as well as alanine, even in the presence of excess of Mg(2+).  相似文献   

17.
The involvement of Mg2+ ions in the reaction catalysed by phosphofructokinase from Trypanosoma brucei was studied. The true substrate for the enzyme was shown to be the MgATP2-complex, and free Mg2+ ions are also required for enzyme activity. At concentrations of MgATP2- of 2.92 mM and greater, and a fructose 6-phosphate concentration of 1 mM and in the presence of EDTA as a Mg2+ buffer, the Km value for Mg2+ was determined to be 294 +/- 18 microM. Neither MgATP nor free ATP is an inhibitor of the enzyme, although apparent inhibition by the latter can be observed as a consequence of the decrease in free Mg2+ by chelation.  相似文献   

18.
Particulate preparations from epimastigote forms of Trypanosoma cruzi contain an adenylyl cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) which could be stored at --20 degree C and resisted 5 cycles of freezing and thawing over 10 days without significant loss of activity. The enzyme reaction strictly required Mn2+, had a pH optimum of 7.7 and was not inhibited or stimulated by NaF. Particles prepared in the presence of 10 mM Mn2+ or Mg2+ were 3--4 times more active than particles prepared in the absence of these cations. However, Mg2+ could not substitute for Mn2+ during enzyme assay nor did it enhance activity in the presence of saturating concentrations of Mn2+. The binary complex Mn - ATP2- was shown to be the true substrate for the adenylyl cyclase and free ATP was highly inhibitory. Plots of enzyme activity against equimolar concentrations of ATP - Mn gave sigmoid curves with n values in Hill plots ranging between 1.5 and 2.0. Excess Mn2+ activated the cyclase catalyzed reaction at low but not at high concentrations of ATP - Mn. In the presence of an excess of 1 mM Mn2+, which transforms 97% of the added ATP to productive Mn - ATP2- complex, the substrate saturation curve assumed a Michaelian pattern with an apparent Km =0.2 mM.  相似文献   

19.
J P Flikweert  R K Hoorn  G E Staal 《Biochimie》1975,57(6-7):677-681
Ca2+ ions have a biphasic effect on the allosteric pyruvate kinase (EC 2.7.1.40) from human erythrocytes: Ca2+ is an activator at low phosphoenolpyruvate (PEP) concentrations: at increased PEP concentrations Ca2+ behaves as an inhibitor. In the presence of ATP the same effect was observed and at low PEP concentrations Ca2+ ions can completely abolish the ATP inhibitory effect. At high Ca2+ concentrations there is a loss of the cooperativity towards PEP. The enzyme activated by fructose-1,6-diphosphate (FDP) is inhibited by Ca2+ ions at all concentrations of PEP tested. Mg2+ ions are not able to counteract the activation by Ca2+ ions at low PEP concentrations. The results are interpreted on the basis of the model of Monod.  相似文献   

20.
This paper deals with the search for specific inhibitors or activators of the mitochondrial phospholipase A2. Convincing evidence for the existence of proteins in the mitochondrial or cytosolic fraction that function as specific regulators of this enzyme was not obtained. The enzymatic activity appeared to be inhibited at low substrate concentrations by lipocortin isolated from human monocytes. However, at higher substrate concentrations, the inhibition disappeared, suggesting either that lipocortin sequestered the phospholipid substrate or that the putative inactive complex of enzyme and lipocortin dissociated in the presence of excess phospholipids. The hydrolysis of the neutral phospholipid phosphatidylethanolamine was stimulated by the presence of cardiolipin and phosphatidylglycerol. It is unlikely that this is caused merely by the negative charge of these phospholipids, since other negatively charged phospholipids did not show this effect. Using a phospholipid extract from mitochondria as substrate, the enzymatic activity as a function of the Ca2+ concentration was determined. Only one enzyme activity plateau was observed. The calculated KCa2+ value of 0.05 mM suggests that the mitochondrial phospholipase A2 could be regulated strictly by the modulation of the free Ca2+ concentration in vivo. The two activity plateaus observed previously upon variation of the Ca2+ concentration using phosphatidylethanolamine as substrate could be explained by a Ca2+-induced transition of the phospholipid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号