首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kcnq1 imprinting control region (ICR) located in intron 10 of the Kcnq1 gene is unmethylated on the paternal chromosome and methylated on the maternal chromosome and has been implicated in the manifestation of parent-of-origin-specific expression of six neighboring genes. The unmethylated Kcnq1 ICR harbors bidirectional silencer activity and drives expression of an antisense RNA, Kcnq1ot1, which overlaps the Kcnq1 coding region. To elucidate whether the Kcnq1ot1 RNA plays a role in the bidirectional silencing activity of the Kcnq1 ICR, we have characterized factor binding sites by genomic footprinting and tested the functional consequence of various deletions of these binding sites in an episome-based system. Deletion of the elements necessary for Kcnq1ot1 promoter function resulted in the loss of silencing activity. Furthermore, interruption of Kcnq1ot1 RNA production by the insertion of a polyadenylation sequence downstream of the promoter also caused a loss of both silencing activity and methylation spreading. Thus, the antisense RNA plays a key role in the silencing function of the ICR. Double-stranded RNA (dsRNA)-mediated RNA interference is unlikely to be involved, as the ICR is active irrespective of the simultaneous production of dsRNA from the genes it silences.  相似文献   

2.
The mechanisms underlying the phenomenon of genomic imprinting are poorly understood. Accumulating evidence suggests that imprinting control regions (ICR) associated with the imprinted genes play an important role in creation of imprinted expression domains by propagating parent-of-origin-specific epigenetic modifications. We have recently documented that the Kcnq1 ICR unidirectionally blocks enhancer-promoter communications in a methylation-dependent manner in Hep-3B and Jurkat cell lines. In this report we show that the Kcnq1 ICR harbors bidirectional silencing and methylation-sensitive methylation-spreading properties in a lineage-specific manner. We fine map both of these functions to two critical regions, and loss of one these regions results in loss of silencing as well as methylation spreading. The cell type-specific functions of the Kcnq1 ICR suggest binding of cell type-specific factors to various cis elements within the ICR. Fine mapping of the silencing and methylation-spreading functions to the same regions explains the fact that the silencing factors associated with this region primarily repress the neighboring genes and that methylation occurs as a consequence of silencing.  相似文献   

3.
4.
5.
The mechanisms underlying the phenomenon of genomic imprinting remain poorly understood. In one instance, a differentially methylated imprinting control region (ICR) at the H19 locus has been shown to involve a methylation-sensitive chromatin insulator function that apparently partitions the neighboring Igf2 and H19 genes in different expression domains in a parent of origin-dependent manner. It is not known, however, if this mechanism is unique to the Igf2/H19 locus or if insulator function is a common feature in the regulation of imprinted genes. To address this question, we have studied an ICR in the Kcnq1 locus that regulates long range repression on the paternally derived p57Kip2 and Kcnq1 alleles in an imprinting domain that includes Igf2 and H19. We show that this ICR appears to possess a unidirectional chromatin insulator function in somatic cells of both mesodermal and endodermal origins. Moreover, we document that CpG methylation regulates this insulator function suggesting that a methylation-sensitive chromatin insulator is a common theme in the phenomenon of genomic imprinting.  相似文献   

6.
7.
Epigenetic marks at cis acting imprinting control regions (ICRs) regulate parent of origin-specific expression of multiple genes in imprinted gene clusters. Epigenetic marks are acquired during gametogenesis and maintained faithfully thereafter. However, the mechanism by which differential epigenetic marks are established and maintained at ICRs is currently unclear. By using Kcnq1 ICR as a model system, we have investigated the functional role of genetic signatures in the acquisition and maintenance of epigenetic marks. Kcnq1 ICR is methylated on the maternal chromosome but remains unmethylated on the paternal chromosome. Here, we show that a paternal allele of Kcnq1 ICR lacking the Kcnq1ot1 promoter remains unmethylated during spermatogenesis; however, it becomes methylated specifically during pre-implantation development. Analysis of the chromatin structure at the paternal ICR in spermatogenic cells and in E13.5 embryonic tissues revealed that the ICRs of both wild type and mutant mice are enriched with H3K4me2 in spermatiogenic cells of the testicular compartment, but the mutant ICR lost H3K4me2 specifically in epididymal sperm and an increase in repressive marks was observed in embryonic tissues. Interestingly, we also detected a decrease in nucleosomal histone levels at the mutant ICR in comparison to the wild-type ICR in epididymal sperm. Taken together, these observations suggest that the Kcnq1ot1 promoter plays a critical role in establishing an epigenetic memory in the male germline by ensuring that the paternal allele remains in an unmethylated state during pre-implantation development.  相似文献   

8.
Paramutation is an epigenetic process in which a combination of alleles in a heterozygous organism results in a meiotically stable change in expression of one of the alleles. The mechanisms underlying paramutation are being actively investigated, and examples have been described in both plants and mammals, suggesting that it may utilize epigenetic mechanisms that are widespread and evolutionarily conserved. Paramutation at the well-studied maize b1 locus requires a control region consisting of seven 853 bp tandem repeats. To study the conservation of the epigenetic mechanisms underlying seemingly unique epigenetic processes such as paramutation, we created transgenic Drosophila melanogaster carrying the maize b1 control region adjacent to the Drosophila white reporter gene. We show that the b1 tandem repeats cause silencing of the white reporter in Drosophila. A single copy of the tandem repeat sequence is sufficient to cause silencing, and silencing strength increases as the number of tandem repeats increases. Additionally, transgenic lines with the full seven tandem repeats demonstrate evidence of either pairing-sensitive silencing and silencing in trans, or epigenetic activation in trans. These trans-interactions are dependent on repeat number, similar to maize b1 paramutation. Also, as in maize, the tandem repeats are bidirectionally transcribed in Drosophila. These results indicate that the maize b1 tandem repeats function as an epigenetic silencer and mediate trans-interactions in Drosophila, and support the hypothesis that the mechanisms underlying such epigenetic processes are conserved.  相似文献   

9.
10.
Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development.  相似文献   

11.
12.
13.
14.
Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three paternally expressed protein-coding genes and multiple non-coding RNA genes, including snoRNAs and microRNAs, expressed from the maternally inherited chromosome. An intergenic, parental-origin-specific differentially methylated region, the IG-DMR, which is unmethylated on the maternally inherited chromosome, is necessary for the repression of the paternally expressed protein-coding genes and for activation of the maternally expressed non-coding RNAs: its absence causes the maternal chromosome to behave like the paternally inherited one. Here, we characterise the developmental consequences of this epigenotype switch and compare these with phenotypes associated with paternal uniparental disomy of mouse chromosome 12. The results show that the embryonic defects described for uniparental disomy embryos can be attributed to this one cluster of imprinted genes on distal chromosome 12 and that these defects alone, and not the mutant placenta, can cause prenatal lethality. In the placenta, the absence of the IG-DMR has no phenotypic consequence. Loss of repression of the protein-coding genes occurs but the non-coding RNAs are not repressed on the maternally inherited chromosome. This indicates that the mechanism of action of the IG-DMR is different in the embryo and the placenta and suggests that the epigenetic control of imprinting differs in these two lineages.  相似文献   

15.
16.
17.
18.
Parental modifiers,antisense transcripts and loss of imprinting   总被引:4,自引:0,他引:4  
The kinship theory of genomic imprinting has explained parent-specific gene expression as the outcome of an evolutionary conflict between the two alleles at a diploid locus of an offspring over how much to demand from parents. Previous models have predicted that maternally derived (madumnal) alleles will be silent at demand-enhancing loci, while paternally derived (padumnal) alleles will be silent at demand-suppressing loci, but these models have not considered the evolution of trans-acting modifiers that are expressed in parents and influence imprinted expression in offspring. We show that such modifiers will sometimes be selected to reactivate the silent padumnal allele at a demand-suppressing locus but will not be selected to reactivate the silent madumnal allele at a demand-enhancing locus. Therefore, imprinting of demand-suppressing loci is predicted to be less evolutionarily stable than imprinting of demand-enhancing loci.  相似文献   

19.
Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs) of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR) depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号