首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of purification of rat liver L-threonine deaminase has been developed, and the results obtained are compared with values obtained by other authors. Some properties of this enzyme (pH optimum, temperature optimum, thermal stability, specificity, etc.) have been examined and we found that the enzyme is inhibited by carbonate ions, that L-cysteine (a competitive inhibitor) is also an inactivator of the enzyme and that it is bound to the enzyme in a ratio of 0.25 mole of cysteine per mole of enzyme, supporting the hypothesis that the enzyme consists of 4 subunits.  相似文献   

2.
alpha-Galactosidase has been purified from Klebsiella Sp. No. PG-2, a bacterium isolated from rat small intestine, using calcium phosphate gel, DEAE-cellulose column chromatography and gel filtration technique. About 130-fold increase in specific activity was observed, the pH optimum of 6.5-7.0 characterizes the enzyme as neutral alpha-galactosidase. The optimum temperature was 37 degrees C and the energy of activation was 11,856 cal/mole. Km values obtained for raffinose, mellibose, stachyose and p-nitrophenyl-alpha-D-galactopyranoside were 20.0, 6.6 33.3 and 4.0 mM respectively. The activity was inhibited by p-CMB; iodoacetate, Ag2+, Hg2+, Cu2+, Pb2+ and galactose. Examination of the enzyme activity indicated that the enzyme is cytosolic and is inducible in nature.  相似文献   

3.
Nicotinamide mononucleotide (NMN) adenylyltransferase has been purified to homogeneity from baker's yeast crude extract. The purification procedure is relatively simple and consists of high-salt extraction of enzyme activity and precipitation with poly(ethylenimine), followed by ion-exchange and dye ligand chromatography separations. The final enzyme preparation is homogeneous as judged by a single Coomassie blue stainable band when run on nondenaturating and denaturating polyacrylamide gels. The native enzyme shows a molecular weight of about 200 000, calculated by gel filtration and sucrose gradient centrifugation. The protein possesses quaternary structure and is composed of four apparently identical Mr 50 000 subunits. The absorption spectrum shows a maximum at 280 nm and a minimum at 253 nm. The isoelectric point is 6.2. Amino acid composition analysis shows the presence of 28 half-cystine residues. The same result has been obtained by titrating the enzyme in denaturating conditions with Ellman's reagent after incubation with sodium borohydride. NMN adenylyltransferase is a glycoprotein containing 2% sugar, 2 mol of alkali-labile phosphate per mole of enzyme, and 1 mol of adenine moiety per mole of enzyme. Therefore, the possibility that the enzyme is ADP-ribosylated exists. The Km values for ATP, NMN, and nicotinate mononucleotide are 0.11 mM, 0.19 nM, and 5 mM, respectively. Kinetic analysis reveals a behavior that is consistent with an ordered sequential Bi-Bi mechanism. The pH optimum is in the range 7.2-8.4.  相似文献   

4.
The kinetic properties of honeybee arginine phosphokinase (APK), which catalyzes the reaction: Arginine phosphate + ADP + H+ ? arginine + ATP, have been studied.In the direction of ATP synthesis, the pH optimum was around pH 7.2 and the activation energy over the range 18–44 °C was about 10,500 cal/mole. The optimum ratio of Mg2+:ADP was about 4:1.In the direction of arginine phosphate (AP) synthesis, the enzyme had a pH optimum around pH 8.3. The energy of activation for the reaction over the range 22–39 °C was about 7500 cal/mole. The optimum ratio of Mg2+:ATP was about 1:1.The initial velocities of the reactions in the direction of ATP and AP synthesis were measured at varying concentrations of one substrate while the concentration of the other substrate was held constant at several levels. The double reciprocal plots of the data obtained yielded a series of intersecting lines, indicating that the enzyme has a sequential mechanism. Radioisotope exchange experiment showed that arginine phosphokinase did not catalyze ATP ? ADP exchange in the absence of arginine. Product inhibition studies showed that arginine was competitive with AP and noncompetitive with ADP; whereas ATP was competitive with ADP and noncompetitive with arginine. The results from initial velocity, radioisotope exchange, and product inhibition studies suggested that the enzyme has a rapid equilibrium, random mechanism.  相似文献   

5.
2,3-Diaminopropionate:ammonia-lyase, an induced enzyme in a Pseudomonas isolate, has been purified 40-fold and found to be homogeneous by disc gel electrophoresis and by ultracentrifugation. Some of its properties have been studied. The optimum pH and temperature for activity are 8 and 40 degrees C, respectively. The enzyme shows a high degree of substrate specificity, acting only on 2,3-diaminopropionate; the D-isomer is only one-eighth as effective as the L-form. L-Homoserine and DL-cystathionine are not substrates, and 3-cyanolalanine does not inhibit its activity. It is a pyridoxal phosphate enzyme which requires free enzyme sulphhydryls for activity. The Km values for L-2,3-diaminopropionate and pyridoxal phosphate are 1mM and 25 muM, respectively. The molecular weight of the enzyme is about 80 000 as determined by gel filtration. On treatment with 0.5M urea or guanidine by hydrochloride, the enzyme dissociates into inactive subunits with an approximate molecular weight of 45 000. One mole of the active enzyme binds one mole of pyridoxal phosphate. The bacterial enzyme seems to be quite different in many of its properties from the rat liver enzyme which also exhibits the substrate specificity of cystathionine gamma-lyase.  相似文献   

6.
Phospholipase C-gamma1 displayed sigmoidal kinetics with a S(0.5) value of 0.17 mole fraction PIP(2) when assayed at pH 6.8 using detergent:lipid mixed micelles. The pH optimum for hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C-gamma1 was dependent on the mole fraction of substrate in the micelle. The pH optimum was 5.5 when the enzyme was assayed below the S(0.5). The pH optima shifted to a pH range of 6.0-6.3 when the enzyme was assayed above the S(0.5). The kinetic parameters for phospholipase C-gamma1 assayed at various pH values from pH 7.0 to 5.0 yielded similar n values (n=4), but the constant, K', decreased from 1x10(-2) (mole fraction)(2) at pH 7.0 to 1x10(-5) (mole fraction)(2) at pH 5.0. Maximum enzyme specificity occurred at pH values below pH 6.0 as determined by the plot of logk(cat)/S(0.5) versus pH. Intrinsic fluorescence spectroscopy revealed that at a pH value above 7.0 or below 6.3, tryptophan quenching occurred. Fluorescence quenching experiments performed with acrylamide determined phospholipase C-gamma1 incubated at pH 5.0 had a larger collisional quenching constant than enzyme incubated at pH 7.0. Lowering the pH to 5.0 apparently resulted in interior tryptophans becoming more solvent accessible. These data suggest that pH may activate phospholipase C-gamma1 by disrupting ionizable groups leading to a conformational change.  相似文献   

7.
The kinetics and action mechanism of the galactose oxidase from Fusarium graminearum were studied. pH-optimum of the enzyme activity and stability was 7.0, the activity and stability of the galactose oxidase being decreased at any other values of pH. The enzyme is destabilized at acidic pH that is connected with protonization of its ionogenic group with pK 4.7. The temperature optimum of the galactose oxidase is 35 degrees C. When studying the enzyme thermoinactivation, it was found that at temperatures below 30 degrees C the energy of activation of denaturation was about 40 kcal/mole and at temperatures ranging from 30 to 70 degrees C - 13 kcal/mole. On the basis of the data obtained it was concluded that a low-temperature form of the galactose oxidase, possessing a higher energy of activation of denaturation, is more active than a high-temperature form. The value of Km for the enzyme in respect to galactose was 0.19 M, and the value of Vmax = 360 mumole/min per g of the preparation.  相似文献   

8.
A peptidyl glycine alpha-amidating activity has been isolated from total tissue extracts of rat medullary thyroid carcinoma (MTC). Purification of the activity by ammonium sulfate fractionation, Sephacryl S-300 chromatography, and strong anion-exchange chromatography at pH 6.0 has resolved at least four peaks of activity. The activity associated with peak III has been further purified to apparent homogeneity by strong anion-exchange chromatography at pH 8.0. The purified peak III enzyme has an apparent molecular mass of 75,000 Da as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The identity of the 75,000-Da band as the alpha-amidating enzyme has been confirmed by recovery of activity from a nondenaturing polyacrylamide gel. The enzyme is catalytically active as a monomer, exhibits a pH optimum between 5.0 and 5.5, and has a turnover number of 300 min-1 for N-dansyl-Tyr-Val-Gly amidation at pH 5.5. The larger size, more acidic pH optimum, and higher specific activity distinguish the purified peak III rat MTC enzyme from the enzymes isolated from bovine and porcine pituitary or from frog skin.  相似文献   

9.
The inhibitors histidine and AMP cause the enzyme ATP phosphoribosyltransferase of E. coli to associate into a hexamer from its initial dimeric form. The behaviour of these inhibitors has been studied by three different methods. I) Equilibrium dialysis studies have shown that one mole of dimeric enzyme (67,000 g) binds one mole of histidine. II) By kinetic inhibition of the reaction studied at 21, 25 and 38 degrees C the enthalpy changes in the process of histidine and of AMP inhibition have been deduced. The inhibition has also been studied in function of enzyme concentration and temperature. The inhibition appears to be slightly negatively cooperative for histidine and positively cooperative for AMP. In neither case is it possible to obtain 100% maximal inhibition. III) By microcalorimetric analysis the values obtained for the enthalpies of histidine and of AMP interaction with the enzyme are similar.  相似文献   

10.
1. Evidence has been produced for the formation of 5-phosphomevalonate from potassium dl-mevalonate by the latex of Hevea brasiliensis and by reconstituted freeze-dried serum obtained from this latex. 2. The enzyme, mevalonate kinase, catalysing the formation of 5-phosphomevalonate from potassium dl-mevalonate and ATP has been partially purified. 3. 5-Phosphomevalonate formed by the purified mevalonate kinase from potassium [2-(14)C]mevalonate has been shown to be incorporated by latex into rubber to about 2.4 times the extent of dl-mevalonate. 4. The enzyme can utilize inosine triphosphate as effectively as adenosine triphosphate as a phosphate donor and is also slightly active with uridine triphosphate. 5. The enzyme was fairly stable to a range of pH values and temperatures, the activity being optimum at pH7.5 and 60-70 degrees . The energy of activation was 10.7kcal./mole. The K(m) values were 0.13mm for potassium dl-mevalonate and 2.0mm for ATP at 30 degrees . 6. The enzyme required the presence of Mn(2+) (1mm) for maximum activity; this could be replaced by Mg(2+) (4mm), which was less effective, and by Ca(2+), which was far less effective. 6. Although the enzyme did not require cysteine or reduced glutathione for activation in aerobic conditions, it was inhibited by reagents known to react with thiol groups.  相似文献   

11.
Methylmalonyl coenzyme A (CoA) mutase has been purified to apparent homogeneity from human liver by a procedure involving column chromatography on DEAE-cellulose, Matrex-Gel Blue A, hydroxylapatite, and Sephadex G-150. The overall purification achieved is 500- to 600-fold, yield 3–5%. Electrophoresis of the native purified protein on nondenaturing polyacrylamide gels shows a single diffuse band coincident with the enzyme activity; dodecyl sulfate/polyacrylamide gels show a single protein band with an apparent molecular weight of 77,500. The native protein has a molecular weight of approximately 150,000 by Sephadex G-150 chromatography, suggesting that it is composed of two identical subunits. The activity of the purified enzyme is stimulated only slightly (10–20%) by the addition of its cofactor, adenosylcobalamin, indicating that the purified enzyme is largely saturated with coenzyme. The spectrum of the enzyme is consistent with the presence of about 1 mole of adenosylcobalamin per mole of subunit. The enzyme displays complex kinetics with respect to dl-methylmalonyl CoA; substrate inhibition by l-methylmalonyl CoA appears to occur. The enzyme activity is stimulated by polyvalent anions (PO43? > SO42? > Cl?); monovalent cations are without effect, but high concentrations of divalent cations are inhibitory. The enzyme activity is insensitive to N-ethylmaleimide, is rapidly destroyed at temperatures > 50 °C, and shows a broad pH optimum around pH 7.5.  相似文献   

12.
In this study, we attempted the efficient production of monoacylglycerols (MAG) via the lipase-catalyzed esterification of glycerol with fatty acids obtained from sardine oil. The reaction factors that influenced MAG synthesis were the glycerol to fatty acid mole ratio, amount of enzyme, organic solvent, temperature, and the type of lipase used. Porcine pancreas lipase was selected to catalyze this reaction. The optimum conditions we determined for MAG synthesis were a glycerol to fatty acid mole ratio of 1∶6, 100 mg/mL of lipase, and 30°C in dioxane. Under these conditions, the MAG content was 68% (w/w) after 72 h of reaction. The MAGs synthesized via the lipase-catalyzed esterification of glycerol with fatty acids included monomyristin, monopamiltin, and monoolein, as identified by GCMS.  相似文献   

13.
Lu TS  Mazelis M 《Plant physiology》1975,55(3):502-506
ORNITHINE: 2-oxoacid aminotransferase (EC 2.6.1.13) has been purified over 400-fold with a total recovery of 14% from acetone powders of cotyledons of germinating squash (Cucurbita pepo, L.) seedlings. The pH optimum of the transamination between l-ornithine and alpha-ketoglutarate is 8 and the Michaelis constants are 4.7 mm and 6.3 mm, respectively. The enzyme has a molecular weight of 48,000 as determined by gel filtration. The reaction is essentially specific for alpha-ketoglutarate as the amino group acceptor. The enzyme is inhibited very strongly by hydroxylamine, and less severely by NaCN and isonicotinylhydrazide. No inhibition is observed in the presence of 10 mml-cysteine. The energy of activation is 7.6 kcal/mole. The stability of the enzyme preparation is enhanced by the presence of dithioerythritol and glycerol. The enzyme activity of the most purified fraction is stimulated 30% by the addition of pyridoxal phosphate; however, the evidence for the unequivocal involvement of pyridoxal phosphate was inconclusive.  相似文献   

14.
1. The enzyme which splits threonine to acetaldehyde and glycine has been partially purified from rat liver (five- to sixfold purification) and the name threonine aldolase proposed for it. 2. The general properties of threonine aldolase have been studied. The enzyme is unstable to a pH below 5. The pH optimum of the enzyme reaction is at 7.5-7.7. The initial rate of production of acetaldehyde is proportional to the enzyme concentration, and when the enzyme concentration is constant, the production of acetaldehyde is proportional to the time, provided that the substrate is in excess. The enzyme is inhibited by the carbonyl group reagent, hydroxylamine. Attempts to demonstrate that pyridoxal phosphate is a cofactor were unsuccessful. 3. The enzyme splits only L-allothreonine and L-threonine and is inactive against the D-forms of these amino acids. 4. The enzyme reaction on DL-allothreonine follows first order kinetics. From the first order velocity constants and the initial rates of the rates of the reaction at various substrate concentrations the Michaelis constant, Ks, for this substrate has been evaluated. Michaelis constants have also been determined for threonine. 5. The optimum temperature for the enzymatic breakdown of DL-allothreonine at pH 7.65 was found to be 50 degrees C. in phosphate buffer and 48 degrees C. in tris-maleate buffer. The rate of thermal inactivation of the enzyme threonine aldolase obeys a first order reaction. The heat of thermal inactivation was calculated by the aid of the van't Hoff-Arrhenius equation to be 43,000 cal. per mole for the temperature range 41.2-46.6 degrees C. 6. Equivalent amounts of acetaldehyde and glycine were formed from DL-allothreonine and the enzymatic breakdown of DL-allothreonine was found to be irreversible.  相似文献   

15.
The endogeneous lipid of bovine heart cytochrome c oxidase has been replaced by dimyristoylphosphatidylcholine using cholate-mediated exchange. The lipid-substituted preparation contained less than 1 mole cardiolipin per mole enzyme and possessed full oxidative activity. The association of spin-labelled cardiolipin with such lipid-substituted cytochrome oxidase preparations has been assayed using ESR spectroscopy. An average relative association constant 5.4-times that for phosphatidylcholine is obtained for cardiolipin. Measurements on preparations with increasing contents of unlabelled cardiolipin, introduced during lipid exchange, reveal that this selectivity corresponds to a generalized increase in specificity for all lipid association sites on the protein.  相似文献   

16.
The influence of phosphorylation on the properties of lactate dehydrogenase (LDH) has been studied. Data obtained using the immobilization approach support the assumption that the autophosphorylation of LDH discovered previously in the presence of ATP has no relation to protein kinase activity of the enzyme. Phosphorylation of native LDH by tyrosine kinases was shown to be inefficient. However, the efficiency of the phosphorylation considerably increased after the dissociation of LDH into non-native forms of the enzyme. Ca2+/calmodulin-dependent protein kinase catalyzes incorporation of 0.8-0.9 mole phosphate per mole of LDH tetramer. The phosphorylation results in an increase in activity by 25-30% and increases markedly the stability of the enzyme during cold inactivation. Phosphorylation of LDH by Ca2+/calmodulin-dependent protein kinase, unlike the phosphorylation on tyrosine residues, is supposed to be of importance for the control of cell metabolism.  相似文献   

17.
The D-aminoacylase produced by Alcaligenes denitrificans DA181 was a new type of aminoacylase which had both high stereospecificity and specific activity. The molecular weight and isoelectric point of this enzyme were 58,000 and 4.4, respectively. The apparent Km and kcat values of this enzyme for N-acetyl-D-methionine were estimated to be 0.48 mM and 6.24 x 10(4) min-1, respectively. The optimum temperature was 45 degrees C. The enzyme was stable up to 55 degrees C for 1 hr in the presence of 0.2 mg/ml bovine serum albumin. The enzyme was stable in the pH range of 6.0 to 11.0 with an optimum pH of 7.5. This enzyme contained about 2.1 g atom of zinc per mole of enzyme. Enzyme activity was inhibited by incubation with EDTA. The inhibition by EDTA was fully reversed by Co2+ and partially by Zn2+.  相似文献   

18.
Phytase from Klebsiella Sp. No. PG-2: purification and properties   总被引:1,自引:0,他引:1  
A phytase (EC 3.1.3.8) was extracted from rat intestinal bacterium, Klebsiella Sp. No. PG.-2, and purified 50-fold by ammonium sulphate fractionation, ion-exchange chromatography and gel filtration. The enzyme is inducible in nature. The pH optimum was at 6.0 for all the inositol phosphates studied and this characterized the enzyme as an acid phosphohydrolase. Of a range of potential substrates tested, only p-nitrophenyl phosphate alongwith the inositol phosphates was hydrolyzed. It exhibits a Km of 2.0 mM; temperature optimum of 37 degrees C and energy of activation 9,120 cal/mole for all the inositol phosphates studied. The activity was inhibited by Ag2+, Hg2+, Cu2+, fluoride and high substrate concentration.  相似文献   

19.
A method has been developed for the purification of beta-cyano-L-alanine synthase from etiolated 10-day-old seedlings of blue lupine. High purity preparations of the enzyme were obtained with specific activity exceeding 4000-fold that of the seedling homogenate. Preparations were homogeneous on electrophoresis in polyacrylamide gel. The yield of total activity after purification was approximately 20%. Glutamic acid is the enzyme's only N-terminal amino acid; the molecular weight of the enzyme (both native and treated with 6 M urea) is 52000. The synthase containes one mole of pyridoxal-P per mole of protein; its isoelectric point is situated at pH 4,8. The enzyme's absorption spectrum has a maximum at 410 nm i.e., in the characteristic range of many pyridoxal-U-containing enzymes. Data on the amino acid composition of the enzyme are presented.  相似文献   

20.
为实现微生物法高效率生产γ-氨基丁酸(GABA),从一株经多次诱变筛选的具有较高谷氨酸脱羧酶(GAD)活力植物乳杆菌GB 01-21全基因组DNA中PCR扩增获得GAD酶基因lpgad,构建重组质粒pET-28a-lpgad,在大肠杆菌E.coli BL21(DE3)中高效诱导表达。并采用Ni柱亲和层析纯化获得重组GAD,并对其酶学性质进行初步研究,为改良转化工艺提高GABA产量提供可靠理论依据。结果显示,重组大肠杆菌中GAD酶活显著提高,可达8.53 U/mg,是植物乳杆菌GB 01-21中GAD酶活的4.24倍。将该重组菌应用于转化L-谷氨酸生产GABA,5 L发酵罐水平转化24 h产量可达143.5 g/L,摩尔转化率为97.32%,是植物乳杆菌GB 01-21的2.19倍。纯化后酶学性质进行初步研究表明:其最适pH为4.8;最适温度为37℃;Ca2+、Mg2+对其有较强的激活作用,将上述实验结果用于转化条件的优化,最终5 L发酵罐上进行转化实验,批次添加底物L-谷氨酸共600 g,转化24 h,GABA累计浓度可达204.5 g/L,摩尔转化率为97.92%,与最初转化条件相比,GABA浓度提高了42.5%,为其工业化应用打下了良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号