首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is recalled that in the larva of Aedes aegypti, starved after a rich protein diet, uric acid is formed and accumulates in the fat body, not as solid spheres but in high concentration in aqueous vacuoles. In the mature larva of Celliphora vicina which has finished feeding and is settling down to form the puparium, the fat body at first contains no argentaffin deposits. During the following 2 or 3 days, argentaffin material appears in the form of amber or brown vesicles and black granules of all sizes. Some of this material remains in the fat body cells; but a large part, presumably polyphenols, is discharged from the cells so that finally all the amber staining disappears and only black granules remain. During this transfer the epidermal cells become charged with sclerotin precursors, which are transferred into the outer part of the cuticle to form the puparium. The stored uric acid remains in the fat body and is dispersed during adult development and ultimately excreted.  相似文献   

2.
In the last-larval instar of the tobacco hornworm, Manduca sexta, a switch from excretion of uric acid to storage in the fat body occurs during transition from the feeding to the wandering stage. Neuroendocrine control of this change from excretion to storage was demonstrated by neck-ligation experiments with synchronously reared larvae. Results indicate that a neurohormone is released from the head 24–30 hr before the initiation of wandering and coincident with the first release of ecdysone that initiates metamorphosis. Direct involvement of the moulting hormone was shown by the effects of multiple injections of 20-hydroxyecdysone into the abdomen of larvae that had been ligated before the release of hormone. Urate levels in the fat body were 20- to 100-fold higher from hormone-injected larvae as from saline inject controls. Topically applied juvenile hormone or methoprene reversed the 20-hydroxyecdysone-induced storage of urate. Increased levels of uric acid in the haemolymph during pupal development result from the presence of juvenile hormone, and the abrupt decrease in uric acid concentration in the haemolymph just prior to pupal ecdysis results from a decreased titre of juvenile hormone. Applications of methoprene prevented the decrease in uric acid levels in the haemolymph.  相似文献   

3.
The de novo biosynthesis of uric acid was examined in isolated hepatocytes from the high and low uric acid lines of chickens. Rates of incorporation of radiolabeled glycine into uric acid by hepatocytes from the high uric acid (HUA) line were approximately 3.6-fold greater than found in low uric acid (LUA) control hepatocytes. Uric acid synthesis rates in these cells were positively correlated with plasma uric acid levels (r = +0.77; P less than 0.01). The activity of phosphoribosylpyrophosphate (PRPP) amidotransferase was measured in acetone powder preparations from liver and kidney tissues of the HUA and LUA lines. Activities in kidney tissues were about 21% lower than those found in livers. PRPP amidotransferase activities in liver and kidney tissues did not correlate significantly with plasma uric acid levels. The increased synthesis of uric acid in the HUA line may be the result of the increased PRPP synthetase activities and PRPP pool sizes previously reported for these tissues.  相似文献   

4.
Uric acid metabolism has been investigated during the pupal and adult stages of Pieris brassicae. Uric acid and its main metabolite, allantoic acid, have been quantified in various organs (fat body, gut, wings) during development, in order to determine synthesis, degradation, and transport phenomena. Both labelling experiments (using 2-14C uric acid, guanine, and guanosine) and enzymatic studies (xanthine dehydrogenase, guanine deaminase, and uricase) were performed.Labelled uric acid, when injected into a young pupa, accumulates preferentially into the fat body, and its degradation leads to an increase in allantoic acid, which is found chiefly in imaginal structures (wings, heads, body wall). Since uricase is present only in low levels through the pupal stage, only a small fraction of uric acid is metabolized.In the developing pharate adult, uric acid is transported via the haemolymph from fat body to the wings and gut. Male wings accumulate more uric acid than female wings. At emergence, a large amount of uric acid and most of the allantoic acid are excreted into the meconium, but not together; uric acid is excreted into the so-called ‘meconium 1’ containing ommochromes, whereas its metabolite is eliminated only after wing expansion into ‘meconium 2’, a colourless fluid. Shortly before emergence, the fat body recovers its ability to synthesize uric acid, a fraction of which is excreted within ‘meconium 1’.During adult life, the synthesis of uric acid occurs in the fat body and ovaries, where it is especially abundant. Ageing organs (wings, heads, testes) accumulate it markedly. A small fraction is excreted together with allantoic acid by the butterfly.Purine catabolism pathways have been investigated, showing that in guanine derivatives, the freebase state of guanine leads quickly to uric acid (and its metabolites), whereas 14C-guanosine may be transformed into nucleotide and incorporated efficiently into wing pteridines when it is injected at the time of adult pigmentation.Another purine derivative, identified as adenosine, has been shown to accumulate in male fat body just before adult emergence. Its amount increases during the first days of emerged adult life, and it corresponds to an alternative pathway of purine catabolism. Its absence in females is related to development of the ovaries.  相似文献   

5.
Levels of uric acid in the whole body of the tobacco hornworm, Manduca sexta increased steadily for the 9 days of the fifth instar. However, concentrations in the haemolymph were lowest during the transition from the feeding stage to the wandering stage (days 3, 4), the time when there was a switch from uric acid excretion by the Malpighian tubule-hindgut system to storage in the fat body. Haemolymph volumes, determined for larvae between 2 and 6 days into the fifth instar by isotope dilution with [14C]-inulin, were used to calculate rates of incorporation of uric acid into Malpighian tubules and fat body of larvae injected with [14C]-uric acid. These labelling studies indicated that the Malpighian tubules ceased to remove uric acid from the haemolymph some time between the last 6 hr of day 3 of the fifth instar and the first 18 hr of day 4. At the same period, fat body removed significant quantities of uric acid from the haemolymph. The times of initial decreases and increases in levels of uric acid in haemolymph and fat body, respectively, indicated that storage in the fat body started before cessation of elimination via the Malpighian tubule-hindgut system.  相似文献   

6.
Uric acid is involved in nitrogenous waste in animals, together with ammonia and urea. Uric acid has also antioxidant properties and is a surrogate marker of metabolic syndrome. We observed that the elevated plasma uric acid of high-fat fed mice was normalized by benzylamine treatment. Indeed, benzylamine is the reference substrate of semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed in fat depots and vessels, which generates ammonia when catalysing oxidative deamination. Ammonia interferes with uric acid metabolism/solubility. Our aim was therefore to investigate whether the lowering action of benzylamine on uric acid was related to an improvement of diabetic complications, or was connected with SSAO-dependent ammonia production. First, we observed that benzylamine administration lowered plasma uric acid in diabetic db/db mice while it did not modify uric acid levels in normoglycemic and lean mice. In parallel, benzylamine improved the glycemic control in diabetic but not in normoglycemic mice, while plasma urea remained unaltered. Then, uric acid plasma levels were measured in mice invalidated for AOC3 gene, encoding for SSAO. These mice were unable to oxidize benzylamine but were not diabetic and exhibited unaltered plasma uric levels. Therefore, activated or abolished ammonia production by SSAO was without influence on uric acid in the context of normoglycemia. Our observations confirm that plasma uric acid increases with diabetes and can be normalized when glucose tolerance is improved. They also show that uric acid, a multifunctional metabolite at the crossroads of nitrogen waste and of antioxidant defences, can be influenced by SSAO, in a manner apparently related to changes in glucose homeostasis.  相似文献   

7.
The fat body of the tobacco hornworm, Manduca sexta, serves as the major site for uric acid storage during metamorphosis. Light and electron microscopic examinations of fat body stained with reduced silver to show the location of stored uric acid have revealed that most, if not all, fat body cells store uric acid. The extent of specific staining is proportional to the increase in uric acid concentration in fat body during the initial stages of metamorphosis. Storage is associated with discrete membrane-bound structures, designated as uric acid storage vacuoles. In larval fat body, the structures are round or elliptical-shaped vacuoles with electron-dense fibrous interiors and are about the size of observed mitocondria (0.5–1.0 μm). During the larval-pupal transformation, the storage vacuoles double in size and appear as fibrous cores with spaces between the cores and the surrounding membranes. Before pupal ecdysis, the storage vacuoles are concentrated around the nucleus of each cell but after that event they are more uniformly distributed within fat body cells.  相似文献   

8.
Uric acid is a well-established scavenger of reactive oxygen and nitrogen species such as hydroxyl radical and peroxynitrite. However, little attention has been paid to the relationship between uric acid and nitric oxide. This paper reports the identification and characterization of a reaction product of uric acid induced by nitric oxide. When uric acid was treated with nitric oxide gas in a neutral solution under aerobic conditions, uric acid was consumed, yielding an unknown product. The product was identified as nitrosated uric acid from mass spectrometric data, although the position of the nitroso group on the molecule was not determined. The nitrosated uric acid decomposed to several compounds including uric acid with a half-life of 2.2 min at pH 7.4 and 37 degrees C. The incubation of nitrosated uric acid with glutathione resulted in the formation of S-nitrosoglutathione. Nitrosated uric acid was also formed in the reaction with nitric oxide donors, but not with peroxynitrite. Nitrosated uric acid was detected in human serum and urine by in vitro treatment with a nitric oxide donor. In the reaction of glutathione with the nitric oxide donor, the addition of uric acid caused an increase in the yield of S-nitrosoglutathione. These results indicate that under aerobic conditions nitric oxide can convert uric acid into its nitroso derivative, which can give a nitroso group to glutathione. Uric acid may act as a vehicle of nitric oxide in humans.  相似文献   

9.
Uric acid is an end-product of purine metabolism in Man, and has been suggested to act as an antioxidant in vivo. Products of attack upon uric acid by various oxidants were measured by high performance liquid chromatography. Hypochlorous acid rapidly oxidized uric acid, forming allantoin, oxonic/oxaluric and parabanic acids, as well as several unidentified products. HOCl could oxidize all these products further. Hydrogen peroxide did not oxidize uric acid at detectable rates, although it rapidly oxidized oxonic acid and slowly oxidized allantoin and parabanic acids. Hydroxyl radicals generated by hypoxanthine/xanthine oxidase or Fe2(+)-EDTA/H2O2 systems also oxidized uric acid to allantoin, oxonic/oxaluric acid and traces of parabanic acid. Addition of ascorbic acid to the Fe2(+)-EDTA/H2O2 system did not increase formation of oxidation products from uric acid, possibly because ascorbic acid can 'repair' the radicals resulting from initial attack of hydroxyl radicals upon uric acid. Mixtures of methaemoglobin or metmyoglobin and H2O2 also oxidized uric acid: allantoin was the major product, but some parabanic and oxonic/oxaluric acids were also produced. Caeruloplasmin did not oxidize uric acid under physiological conditions, although simple copper (Cu2+) ions could, but this was prevented by albumin or histidine. The possibility of using oxidation products of uric acid, such as allantoin, as an index of oxidant generation in vivo in humans is discussed.  相似文献   

10.
The newly fed fourth instar larva of Rhodnius lays down the outer epicuticle at 8-9 days, the inner epicuticle at 9 days, and it moults at 12 days. The oenocytes, which supply the lipid precursors, reach their maximum size at 7 days when lipid spheres and lipid-coated vesicles appear in their cytoplasm. The epidermal cells extend cytoplasmic strands to the contracting oenocytes and receive abundant lipid, which they transfer to the plasma membrane for construction of the outer and inner epicuticle. The oenocytes also transfer lipid to the epidermis attached to the basal lamina. This lipid is discharged through the lamina and taken up by ocnocytoids. which apply themselves to the basal lamina and liberate this copious absorbed material into the haemolymph before disintegrating. The synthesis of polyphenols for sclerotization takes place in the fat body, reaching a peak at day 10. After discharge into the haemolymph it is taken (presumably by a carrier protein) to the epidermis, where its uptake and transfer can be monitored by argentaffin staining. The tubular system of pore canals and tubular filaments is formed by invagination of the plasma membrane immediately after the inner epicuticle is complete, and is filled with lipid precursors and polyphenols. There is evidence that these metabolites are carried separately: the lipid in multiple tubular filaments; the polyphenol through the substance of the axial filament. Lipid and polyphenols are still supplied to the epidermis during days 10-12. Both are most richly supplied to the sites forming exocuticle-which illustrates the importance of lipid as well as polyphenol in cuticle hardening.  相似文献   

11.
Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan’s ability to reduce uric-acid-induced COX-2 elevation.  相似文献   

12.
Summary Histology and ultrastructure of the connexion of seminiferous and straight testicular tubules were studied in 58 bovine testes of 29 animals ranging from 4 to 52 weeks of postnatal development. In the 4th and 8th week seminiferous tubules are solid. Their non-germinal supporting cells possess spherical nuclei in a basal location and a great amount of granular endoplasmic reticulum. The straight tubules have a narrow lumen and a stratified epithelium rich in intercellular canaliculi. Between 20 and 25 weeks the seminiferous tubules acquire a lumen and develop a terminal segment, the tip of which (terminal plug) protrudes into the cup-shaped modification of the adjacent straight tubule. At 30 weeks the structural differentiation between seminiferous tubule proper and its terminal segment has proceeded: in the former spermatocytes and spermatids make their first appearance, and the supporting cells have transformed to Sertoli cells. In the latter the morphology of the supporting cell preserves a more primitive state. Starting from the 16th week and proceeding through the 30th week and further, the epithelium of the tubulus rectus close to the connexion with the seminiferous tubule becomes monolayered by rearrangement of its cells and advances along the basal lamina into the area of the seminiferous tubule. Those cells of the seminiferous tubule that are cut off from the basal lamina by invading rectus cells degenerate. Between 40 and 52 weeks the adult situation is principally achieved. The terminal segment of the seminiferous tubule is tripartite consisting of transitional region, intermediate portion, and terminal plug. The terminal segment is surrounded by a vascular plexus. The straight testicular tubule adjacent to the terminal segment is modified into a cup region encompassing the terminal plug, followed by a narrow stalk region, which is lined by simple columnar epithelium. Mononuclear free cells are a constant feature of the tubulus rectus epithelium in all stages of postnatal development.Supported by grant Wr 7/6-6 from the Deutsche Forschungsge-meinschaft  相似文献   

13.
Uric acid is considered as an antioxidant in the blood. Despite its proposed protective properties, elevated plasma uric acid has been associated with hypertension in a variety of disorders. The purpose of this study was to investigate the relationship between the increase of arterial blood pressure and the changes in serum uric acid, measured during the gradual development of experimental hypertension in deoxycorticosterone (DOCA)-salt-treated rats. Blood pressure was monitored by tail-cuff method, urinary and plasma uric acid was measured by autoanalyzer during the induction of hypertension in 1-, 2-, 3- and 4-week DOCA-salt-treated Sprague-Dawley rats. Vitamin E (200 mg/kg/day/gavage) was co-administered with DOCA-salt for 4 weeks. From the first week of DOCA-salt treatment, rats exhibited marked increases in blood pressure. DOCA-salt treatment also resulted in a significant increase in serum uric acid and a significant decrease in urinary uric acid at the end of the first week. These changes in serum and urinary uric acid remained until the 4th week of DOCA-salt treatment but blood pressure continued to increase throughout the study. Vitamin E treatment increased urinary excretion of uric acid and decreased blood pressure and serum uric acid in DOCA-salt-treated rats. These data suggest that enhanced serum uric acid may be a contributing factor to the onset of hypertension in DOCA-salt-treated rats. A uricosuric effect is suggested for vitamin E in the treatment of hypertension.  相似文献   

14.
Uric acid is present in human plasma in relatively high concentrations and is considered to be a natural physiological antioxidant. We have earlier shown that in the presence of Cu(II) and molecular oxygen, uric acid causes strand breakage in DNA. In this article, we show that uric acid fluorescence is quenched by addition of DNA, indicating the formation of uric acid-DNA complex. Uric acid-Cu(II)-mediated DNA strand scission is capable of bacteriophage inactivation and such inactivation is mediated through reduction of Cu(II) to Cu(I) and the generation of oxygen-derived radicals. It is indicated that the DNA breakage is repaired in E. coli and involves the repair of DNA polymerase. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Allantoin and allantoic acid are investigated in the faeces and tissues of the developing sixth instar larva of the moth, Orthaga exvinacea. The nitrogen excreted as allantoin and allantoic acid is compared with nitrogen excreted as uric acid and ammonia. The larva excretes 2.35–5.14 μmol/g allantoin and 0.74–1.34 μmol/g allantoic acid which account for 0.83 to 2.39% and 0.23 to 0.53%, respectively, of the excreted total nitrogen. Allantoin and allantoic acid are found to be minor nitrogenous end-products of the larva. Allantoin and allantoic acid are also present in the haemolymph and fat body of the larva in varying concentrations. The level of allantoin in the haemolymph shows a negative correlation with the allantoin concentration of faeces and fat body. The allantoin is found to be stored in the fat body at a low level. The results of the present study also indicate the coexistence of uric acid storage and uricolysis.  相似文献   

16.
17.
1. Accumulation of uric acid and PAH was measured in renal cortical slices of various mammalian species. 2. The slice to medium ratio of uric acid was above unity in the rabbit, guinea pig, pig and cow, suggesting an active accumulation of uric acid, while it was near or below unity in the rat and mongrel dog. 3. Uric acid uptake in the rabbit, guinea pig and cow was significantly inhibited by PAH. 4. Uric acid was a potent inhibitor of PAH uptake in the rabbit, guinea pig, dog and pig, but much less potent in the rat and cow. 5. Kinetic analysis showed that uric acid inhibited PAH uptake in a competitive manner in all species studied except for the cow showing a noncompetitive type. 6. These results indicate that uric acid and PAH share a common transport mechanism at the basolateral membrane of the rabbit, guinea pig and pig.  相似文献   

18.
Free radical metabolite of uric acid   总被引:2,自引:0,他引:2  
Uric acid has previously been shown to act as a water-soluble antioxidant. Although the antioxidant activity of uric acid has been attributed to its ability to scavenge free radicals, the one-electron uric acid oxidation product of such a scavenging reaction has not been detected. It order to determine whether a free radical metabolite of uric acid could be formed via one-electron redox processes, we oxidized uric acid with potassium permanganate, horseradish peroxidase/hydrogen peroxide, and hematin/hydrogen peroxide systems. With the use of the rapid-mixing, continuous-flow electron spin resonance technique, we were able to detect the urate anion free radical in all three radical-generating systems. Based on N15-isotopic-labeling experiments, we show that the unpaired electron of this radical is located primarily on the five-membered ring of the purine structure. We were also able to demonstrate that this radical could be scavenged by ascorbic acid.  相似文献   

19.
Uric acid transporter URAT1 contributes significantly to reabsorption of uric acid in humans to maintain a constant serum uric acid (SUA) level. Since alteration of SUA level is associated with various diseases, it is important to clarify the mechanism of change in SUA. However, although expression of mRNA of an ortholog of URAT1 (rUrat1) in rats has been reported, functional analysis and localization have not been done. Therefore, rat rUrat1 was functionally analyzed using gene expression systems and isolated brush-border membrane vesicles (BBMVs) prepared from rat kidney, and its localization in kidney was examined immunohistochemically. Uric acid transport by rUrat1 was chloride (Cl-) susceptible with a Km of 1773μM. It was inhibited by benzbromarone and trans-stimulated by lactate and pyrazinecarboxylic acid (PZA). Cl- gradient-susceptible uric acid transport by BBMVs showed similar characteristics to those of uric acid transport by rUrat1. Moreover, rUrat1 was localized at the apical membrane in proximal tubular epithelial cells in rat kidney. Accordingly, rUrat1 is considered to be involved in uric acid reabsorption in rats in the same manner as URAT1 in humans. Therefore, rUrat1 may be a useful model to study issues related to the role of human URAT1.  相似文献   

20.
The inhibition of xanthine oxidase by its reaction product, uric acid, was studied by steady state kinetic analysis. Uric acid behaved as an uncompetitive inhibitor of xanthine oxidase with respect to the reducing substrate, xanthine. Under 50 microM xanthine and 210 microM oxygen, the apparent K(i) for uric acid was 70 microM. Uric acid-mediated xanthine oxidase inhibition also caused an increase in the percentage of univalent reoxidation of the enzyme (superoxide radical production). Steady-state rate equations derived by the King-Altman method support the formation of an abortive-inhibitory enzyme-uric acid complex (dead-end product inhibition). Alternatively, inhibition could also depend on the reversibility of the classical ping-pong mechanism present in xanthine oxidase-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号