首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.  相似文献   

2.
Zhang JR  Mostov KE  Lamm ME  Nanno M  Shimida S  Ohwaki M  Tuomanen E 《Cell》2000,102(6):827-837
The polymeric immunoglobulin receptor (pIgR) plays a crucial role in mucosal immunity against microbial infection by transporting polymeric immunoglobulins (pIg) across the mucosal epithelium. We report here that the human pIgR (hpIgR) can bind to a major pneumococcal adhesin, CbpA. Expression of hpIgR in human nasopharyngeal cells and MDCK cells greatly enhanced pneumococcal adherence and invasion. The hpIgR-mediated bacterial adherence and invasion were abolished by either insertional knockout of cbpA or antibodies against either hpIgR or CbpA. In contrast, rabbit pIgR (rpIgR) did not bind to CbpA and its expression in MDCK cells did not enhance pneumococcal adherence and invasion. These results suggest that pneumococci are a novel example of a pathogen co-opting the pIg transcytosis machinery to promote translocation across a mucosal barrier.  相似文献   

3.
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase.  相似文献   

4.
The pneumococcus is the principle cause of bacterial pneumonia and also a major cause of bacterial meningitis. The mechanisms and sites of pneumococcal adherence and invasion of the respiratory tract in vivo are not clear however. We have made pneumococci expressing green fluorescent protein (GFP) and used it to trace pneumococcal adherence and invasion in vivo. By using GFP pneumococci we have shown bacterial adherence and invasion of broncho-epithelial cells in vivo by 4 h post-infection, with increases in pneumococcal invasiveness by 24 h. Using confocal image analysis we have shown varying levels of pneumococcal penetration and internalisation into host cells, as well as translocation through epithelial layers. To our knowledge this is the first report of pneumococcal invasion and cellular translocation in vivo.  相似文献   

5.
Since the incidence of penicillin-resistant Streptococcus pneumoniae has been increasing at an astonishing rate throughout the world, the need for accurate and rapid identification of pneumococci has become increasingly important to determine the appropriate antimicrobial treatment. We have evaluated an immunochromatographic test (ODK-0901) that detects pneumococcal antigens using 264 middle ear fluids (MEFs) and 268 nasopharyngeal secretions (NPSs). A sample was defined to contain S. pneumoniae when optochin and bile sensitive alpha hemolytic streptococcal colonies were isolated by culture. The sensitivity and specificity of the ODK-0901 test were 81.4% and 80.5%, respectively, for MEFs from patients with acute otitis media (AOM). In addition, the sensitivity and specificity were 75.2% and 88.8%, respectively, for NPSs from patients with acute rhinosinusitis. The ODK-0901 test may provide a rapid and highly sensitive evaluation of the presence of S. pneumoniae and thus may be a promising method of identifying pneumococci in MEFs and NPSs.  相似文献   

6.
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial cells.  相似文献   

7.
8.
The human matricellular glycoprotein thrombospondin-1 (hTSP-1) is released by activated platelets and mediates adhesion of Gram-positive bacteria to various host cells. In staphylococci, the adhesins extracellular adherence protein (Eap) and autolysin (Atl), both surface-exposed proteins containing repeating structures, were shown to be involved in the acquisition of hTSP-1 to the bacterial surface. The interaction partner(s) on the pneumococcal surface was hitherto unknown. Here, we demonstrate for the first time that pneumococcal adherence and virulence factor B (PavB) and pneumococcal surface protein C (PspC) are key players for the interaction of Streptococcus pneumoniae with matricellular hTSP-1. PavB and PspC are pneumococcal surface-exposed adhesins and virulence factors exhibiting repetitive sequences in their core structure. Heterologously expressed fragments of PavB and PspC containing repetitive structures exhibit hTSP-1 binding activity as shown by ELISA and surface plasmon resonance studies. Binding of hTSP-1 is charge-dependent and inhibited by heparin. Importantly, the deficiency in PavB and PspC reduces the recruitment of soluble hTSP-1 by pneumococci and decreases hTSP-1-mediated pneumococcal adherence to human epithelial cells. Platelet activation assays suggested that PavB and PspC are not involved in the activation of purified human platelets by pneumococci. In conclusion, this study indicates a pivotal role of PavB and PspC for pneumococcal recruitment of soluble hTSP-1 to the bacterial surface and binding of pneumococci to host cell-bound hTSP-1 during adhesion.  相似文献   

9.
Streptococcus pneumoniae (pneumococci) adhere to human nasopharyngeal (NP) epithelial cells as a first step in colonization and adherence of pneumococci to lung epithelia may be required to establish pneumonia. We sought to determine if PcpA can serve as an adhesin to human NP (D562) and lung (A549) epithelial cells and whether PcpA mediated adherence can be inhibited by human anti-PcpA antibodies. A PcpA isogenic mutant was constructed in a pneumococcal TIGR4 background. When the mutant and wild type strains were compared for their adherence to D562 and A549 cell lines, a reduction in adherence by the mutant was observed (p = 0.0001 for both cell types). PcpA was ectopically expressed on the surface of minimally-adherent heterologous host Escherichia coli resulting in augmented adherence to D562 (p = 0.002) and A549 (p = 0.015) cells. Total IgG was purified from a pool of 6 human sera having high IgG titers of anti-pneumococcal proteins. The purified IgG reduced TIGR4 adherence to D562 cells but we determined that this effect was largely due to bacterial cell aggregation as determined by flow cytometry and confocal microscopy. Fab fragments were prepared from pooled IgG sera. Inhibition of TIGR4 adherence to D562 cells was observed using the Fab fragments without causing bacterial aggregation (p = 0.0001). Depletion of PcpA-specific Fab fragments resulted in an increase in adherence of TIGR4 to D562 cells (p = 0.028). We conclude that PcpA can mediate adherence of pneumococci to human NP and lung epithelial cells and PcpA mediated adherence can be inhibited by human anti-PcpA antibodies.  相似文献   

10.
11.
Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.  相似文献   

12.
The natural niche of Streptococcus pneumoniae is the nasopharyngeal mucosa and nasopharyngeal carriage of pneumococci is widely prevalent. Pneumolysin (Ply), a pore-forming protein produced by S. pneumonia, may be important in driving the innate immune response of the nasopharynx. We studied the Ply-induced production of CXCL8 by nasopharyngeal cells and further analysed the mechanism of this induction. Detroit nasopharyngeal cells were stimulated with supernatants derived from bacterial cultures of Ply-deficient, wild-type pneumococci and recombinant Ply, and CXCL8 measured by ELISA. The role of MAP kinase family members in Ply-induced CXCL8 production was analysed using specific inhibitors, NF-κB activity was measured by immunoblot and Ply-mediated TLR4 activation analysed by a CXCL8 promotor luciferase assay. Ply significantly increased production of CXCL8 in Detroit and primary nasal cells. Flow cytometric analysis showed that Detroit cells express cell surface TLR4. CXCL8 production was dependent on changes in the intracellular Ca(2+) levels and also by NF-κB via activation of TLR4, and MAP kinase signalling. Ply induces production of CXCL8 by nasopharyngeal cells using signalling mechanisms involving Ca(2+) mobilisation and activation of MAPK and NF-κB via TLR4. This may be important in regulating nasopharyngeal immunity against pneumococcal colonization.  相似文献   

13.
Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.  相似文献   

14.
Streptococcus pneumoniae is a major causative agent of mortality throughout the world. The initial event in invasive pneumococcal disease is the attachment of pneumococci to epithelial cells in the upper respiratory tract. Several bacterial proteins can bind to host extracellular matrix proteins and function as adhesins and invasins. To identify adhesins or invasins on the pneumococcal cell surface, we searched for several proteins with an LPXTG anchoring motif in the whole-genome sequence of Streptococcus pneumoniae and identified one, which we called PfbA (plasmin- and fibronectin-binding protein A), that bound to human serum proteins. Immunofluorescence microscopy and fluorescence-activated cell sorter analysis revealed that PfbA was expressed on the pneumococcal cell surface. A DeltapfbA mutant strain was only half as competent as the wild-type strain at adhering to and invading lung and laryngeal epithelial cells. In addition, epithelial cells infected with DeltapfbA showed morphological changes, including cell flattening and a loss of microvilli, that did not occur in cells infected with the wild-type strain. The mutant strain also exhibited a weaker antiphagocytotic activity than wild type in human peripheral blood. Moreover, the growth of wild-type bacteria in human whole blood containing anti-PfbA antibodies was reduced by approximately 50% after 3 h compared with its growth without the antibody. These results suggest that PfbA is an important factor in the development of pneumococcal infections.  相似文献   

15.
Streptococcus pneumoniae, the major cause of community-acquired pneumonia and bacterial meningitis, has been shown to transiently invade epithelial and endothelial cells. Innate immune receptors including Toll-like receptors recognize various pathogens, such as S. pneumoniae, by identifying conserved pathogen-associated molecular patterns. Recently, two members of a novel class of pattern recognition receptors, the cytosolic proteins nucleotide-binding oligomerization domain 1 (Nod1)/CARD4 and Nod2/CARD15, have been found to detect cell wall peptidoglycans. Here we tested the hypothesis that Nod proteins are involved in the intracellular recognition of pneumococci. Data indicate that pneumococci invade HEK293 cells. Genetic complementation studies in these cells demonstrate that NF-kappaB activation induced by S. pneumoniae depends on Nod2. Moreover, intracellular transfection of inactivated pneumococci yielded similar effects, confirming the Nod2 dependence of NF-kappaB activation by pneumococci in HEK293 cells. By dominant negative overexpression and small interfering RNA experiments, we show for the first time that interleukin-1 receptor-associated kinase participates in Nod2-dependent NF-kappaB activation. Additionally, dominant negative interleukin-1 receptor-associated kinase 2, tumor necrosis factor receptor-associated factor 6, NF-kappaB-inducing kinase, transforming growth factor-beta-activated kinase-binding protein 2, and transforming growth factor-beta-activated kinase 1 also inhibited Nod2-dependent NF-kappaB activation. We finally demonstrate that in C57BL/6 mouse lung tissue in vivo as well as in the bronchial epithelial cell line BEAS-2B, Nod1 and Nod2 mRNA expressions were up-regulated after pneumococcal infection. Data presented suggest that Nod proteins contribute to innate immune recognition of S. pneumoniae. Furthermore, Rip-2 and members of the Toll-like receptor-signaling cascade are involved in the Nod2-dependent activation of NF-kappaB induced by pneumococci.  相似文献   

16.
Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell-surface anchorage signals within the primary sequence. Full-length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid-phase fibronectin, in a heparin-sensitive interaction, and blocked binding of wild-type pneumococcal cells to fibronectin. However, a C-terminally truncated PavA' polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2-2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2-2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C-terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell-surface physico-chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104-fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin-binding protein plays a direct role in the pathogenesis of pneumococcal infections.  相似文献   

17.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

18.
肺炎链球菌(Streptococcus pneumoniae,SP)普遍定植于呼吸道,是人类重要的侵袭性病原菌之一,是社区获得性肺炎、中耳炎、脑膜炎、菌血症、鼻窦炎的主要病原菌。肺炎链球菌粘附和毒力因子A(pneumococcal adherence and virulence factor A,PavA)是肺炎链球菌早期感染和侵袭过程中关键的毒力因子。体外试验表明,缺失PavA的肺炎链球菌的突变株其粘附和侵入上皮细胞和内皮细胞的能力明显下降。作为一种保护性抗原,其诱导的细胞和体液免疫可以有效的抵抗肺炎链球菌的感染,是肺炎链球菌新一代疫苗的候选蛋白。但是,PavA在肺炎链球菌与人肺上皮细胞交互对话中作用机制的研究尚属空白,本文就肺炎链球菌粘附和毒力因子A得最新研究进展作一综述。  相似文献   

19.
We examined effects of mast cell glycosaminoglycans on the establishment of the intestinal nematode, Strongyloides venezuelensis, in the mouse small intestine. When intestinal mastocytosis occurred, surgically implanted adult worms could not invade and establish in the intestinal mucosa. In mast cell-deficient W/Wv mice, inhibition of adult worm invasion was not evident as compared with littermate +/+ control mice. Mucosal mastocytosis and inhibition of S. venezuelensis adult worm mucosal invasion was tightly correlated. To determine effector molecules for the invasion inhibition, adult worms were implanted with various sulfated carbohydrates including mast cell glycosaminoglycans. Among sulfated carbohydrates tested, chondroitin sulfate (ChS)-A, ChS-E, heparin, and dextran sulfate inhibited invasion of adult worms into intestinal mucosa in vivo. No significant inhibition was observed with ChS-C, desulfated chondroitin, and dextran. ChS-E, heparin, and dextran sulfate inhibited adhesion of S. venezuelensis adult worms to plastic surfaces in vitro. Furthermore, binding of intestinal epithelial cells to adhesion substances of S. venezuelensis, which have been implicated in mucosal invasion, was inhibited by ChS-E, heparin, and dextran sulfate. Because adult worms of S. venezuelensis were actively moving in the intestinal mucosa, probably exiting and reentering during infection, the possible expulsion mechanism for S. venezuelensis is inhibition by mast cell glycosaminoglycans of attachment and subsequent invasion of adult worms into intestinal epithelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号