首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Seasonal influence on reproduction in chimpanzees of gombe national park   总被引:3,自引:0,他引:3  
Although wild chimpanzees are not seasonal breeders, there are seasonal effects on several aspects of chimpanzee reproduction. I examined the seasonal incidence of anogenital swelling in cyclic, pregnant, and acyclic female chimpanzees in Gombe National Park, May 1975–April 1992, and surveyed important reproductive events to determine whether there is a seasonal effect. I analyzed data by season (wet vs. dry) and seasonal quarter;early dry season = May–July;late dry = August–October;early wet = November–January;late wet = February–April. When data for the 17 years are combined, the percentage of females in each reproductive state remains consistent throughout the year. In a given month, 30–35% of subjects were in the cyclic category, 11–15% were pregnant, and 54–61% were acyclic. Cyclic females showed full swelling more often during the late dry season. Pregnant females exhibited anogenital swelling more often during the late dry and early wet seasons. Acyclic females also exhibited a seasonal effect with more anogenital swelling during the late dry season. There is no seasonal difference in frequency of live births (dry, 20;wet, 23). However, the timing of conception showed a seasonal effect (dry, 32;wet, 16). Consistent with earlier reports, the onset of postpartum cycles is highly seasonal;30 occurred during dry season, 9 during wet season. The occurrence of first full swellings for young females is also concentrated in the late dry season. It appears that the dry season is a time of great change for Gombe chimpanzee reproductive physiology. Previous studies indicated that seasonal changes in food availability play a role in increasing group size during the dry season and social contact between females can enhance cyclicity. Accordingly, I suggest that seasonal changes in diet may play a role, either directly (food content) or indirectly (social contact), to alter reproductive physiology.  相似文献   

2.
Vallente RU  Cheng EY  Hassold TJ 《Chromosoma》2006,115(3):241-249
Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633–638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363–365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405–408; Pathak and Elder (1980) Hum Genet 54:171–175; Solari (1980) Chromosoma 81:315–337; Speed (1984) Hum Genet 66:176–180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215–226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833–848; Vidal et al. (1982) Hum Genet 60:301–304; Bojko (1983) Carlsberg Res Commun 48:285–305; Bojko (1985) Carlsberg Res Commun 50:43–72; Templado et al. (1984) Hum Genet 67:162–165; Navarro et al. (1986) Hum Reprod 1:523–527; Garcia et al. (1989) Hum Genet 2:147–53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.The synaptonemal complex–50 years  相似文献   

3.
Miconia albicans, a common evergreen cerrado species, was studied under field conditions. Leaf gas exchange and pre-dawn leaf water potential (Ψpd) were determined during wet and dry seasons. The potential photosynthetic capacity (P Npmax) and the apparent carboxylation efficiency (ε) dropped in the dry season to 28.0 and 0.7 %, respectively, of the maximum values in the wet season. The relative mesophyll (Lm) and stomatal (Ls) limitations of photosynthesis increased, respectively, from 24 and 44 % in the wet season to 79 and 57 % at the peak of the dry season when mean Ψpd reached −5.2 MPa. After first rains, the P Npmax, ε, and Lm recovered reaching the wet season values, but Ls was maintained high (63 %). The shallow root system growing on stonemason limited by lateral concrete wall to a depth of 0.33 m explained why extreme Ψpd was brought about. Thus M. albicans is able to overcome quickly the strains imposed by severe water stress.  相似文献   

4.
The spatial and temporal distributions of dissolved inorganic nutrients were investigated between May 1996 and April 1997 in Mida Creek, a mangrove area along the north coast region of Kenya. The nutrient levels of pore water from boreholes/wells within the surrounding area of the creek were also investigated for comparison. In addition, phytoplankton distribution in Mida Creek was assessed in three stations within the creek in order to determine the structure and succession stages of the phytoplankton community and to provide an indication of the status of primary productivity of the creek. Measurements carried out within the creek revealed that the mean concentration ranges for NH4+ –N, (NO 2 + NO3)−N, PO43− −P and SiO32− −Si were: 0.002–5.45; 0.12–5.63; 0.10–0.58 and 1.31–81.36 μM, respectively. For the case of boreholes/wells found in the surrounding area, their respective nutrient levels were found to lie in the ranges 0.4–907.0; 16.7–4897.0; 1.09–22.39 and 83.9–596.0 μM. A total of 295 species of phytoplankton belonging to 78 genera were identified with great temporal variability in abundance in all the stations sampled. The most dominant algal members in the Creek included Chaetoceros spp., Chroococcus limneticus and Oscillatoria spp. The diversity values recorded were indicative of mesotrophic conditions. The highest nutrient concentration levels within the creek were measured during the wet season as compared to dry season and this trend closely corresponded with that of the phytoplankton productivity. However, no significant variation ( p > 0.05) was found in all cases with respect to the tidal cycles. On the contrary, diurnal nutrient concentrations especially in areas with high flooding duration (>12 h) were found to be highest during the dry season as opposed to wet season for all nutrients except for SiO32−. The relatively high nutrient laden groundwater outflow into the creek water, coupled with surface runoff events during wet season, are the two main factors responsible for the elevated nutrients in the creek waters in the absence of river inflow into the creek.  相似文献   

5.
Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gs declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gs and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.  相似文献   

6.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

7.
The study compared the species composition of phytoperiphyton (“lab-lab”) present in ponds when gradually filled with water weekly to depths of 5, 10, 15 and 30 cm between the wet and dry seasons, for one month before the stocking of fish was studied. This was done during the dry season (March–April, 2003) and wet season (June–July, 2002). Periphyton was allowed to grow on 24 artificial substrates set at equal distances in a 1000 m2 pond. “Lab-lab” that colonized the artificial substrates and that on the pond surrounding the substrates were scraped off from a measured surface area. Simultaneously, water was collected for the analysis of physical, chemical and biological parameters. Sampling was done bi-weekly coinciding with 2 and 7 days submergence at a desired depth before adjusting the water level. The major algae consisted of the diatoms (Bacilliarophyta), the blue green algae (Cyanobacteria), and the green algae (Chlorophyta). The diatoms were dominant during the dry season while the cyanobacteria dominated during the wet season. Twenty eight genera were observed during the dry season and 25 genera were noted in the wet season. Variation in genera and density that were observed every sampling period, was influenced by environmental conditions and the incoming water. The total algal density ranged from 100.7 × 108 – 855.1 × 108 and to 24.7 × 108 – 83.9 × 108 organisms.m−2 during the dry and wet seasons, respectively. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

8.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

9.
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.  相似文献   

10.
Increased export of biologically available nitrogen (N) to the coastal zone is strongly linked to eutrophication, which is a major problem in coastal marine ecosystems (NRC (2000) Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC; Bricker et al. (1999) National Estuarine Eutrophication Assessment. Effects of nutrient enrichment in the nation’s estuaries. NOAA-NOS Special Projects Office, Silver Spring, MD). However, not all of the nitrogen input to a watershed is exported to the coast (Howarth et al. (1996) Biogeochemistry 35:75–139; Jordan and Weller (1996) Bioscience 46:655–664). Global estimates of nitrogen export to coasts have been taken to be 25% of watershed input, based largely on northeastern U.S. observations (Galloway et al. (2004) Biogeochemistry 70:153–226; Boyer et al. (2006) Global Biogeochem Cycle 20:Art. No. GB1S91). We applied the N budgeting methodology developed for the International SCOPE Nitrogen project (Howarth et al. (1996) Biogeochemistry 35:75–139; Boyer et al. (2002) Biogeochemistry 57:137–169) to 12 watersheds in the southeastern U.S., and compared them with estimates of N export for 16 watersheds in the northeastern U.S. (Boyer et al. (2002) Biogeochemistry 57:137–169). In southeastern watersheds, average N export was only 9% of input, suggesting the need for downward revision of global estimates. The difference between northern and southern watersheds is not a function of the absolute value of N inputs, which spanned a comparable range and were positively related to export in both cases. Rather, the proportion of N exported was significantly related to average watershed temperature (% N export = 58.41 e−0.11 * temperature; R 2 = 0.76), with lower proportionate nitrogen export in warmer watersheds. In addition, we identified a threshold in proportionate N export at 38°N latitude that corresponds to a reported breakpoint in the rate of denitrification at 10–12°C. We hypothesize that temperature, by regulating denitrification, results in increased proportionate N export at higher latitudes. Regardless of the mechanism, these observations suggest that temperature increases associated with future climate change may well reduce the amount of nitrogen that reaches estuaries, which will have implications for coastal eutrophication.  相似文献   

11.
Several authors have recently argued that invasion biologists should adopt a more objective and dispassionate stance towards invasive species. Brown and Sax (Austral Ecol 29:530–536, 2004; Austral Ecol 30:481–483, 2005) assert that invasion biologists risk their objectivity, “commit the naturalist fallacy” or “embark on a slippery slope” with engaged concern about invasive species. Elsewhere, Colautti and MacIsaac (Divers Distrib 10:135–141, 2004) propose a neutral language for invasion biology, one that insulates scientific from popular discussion about invasive species. While there is certainly hyperbole about the effects of some invasive species, the type of objectivity promoted in these papers may often be inappropriate for invasion biology. It implies a policy of non-action that is inconsistent with the conservation values of many invasion biologists. To engage these values, invasion biologists can adopt deliberative methods for environmental problem-solving that involve stakeholders in their research design and which still promote high standards of scientific rigor.  相似文献   

12.
Studies of selected morphological needle parameters were carried out on young (17–19 year old) Norway spruce trees cultivated inside glass domes at ambient (A, 370 μmol (CO2) mol−1) and elevated (E, 700 μmol (CO2) mol−1) atmospheric CO2 concentrations [CO2] beginning in 1997. Annual analyses performed from 2002 to 2004 revealed higher values for needle length (especially for current needles, up to 18%) and projected needle area (up to 13%) accompanied by lower values for specific needle area (up to 15% lower, as quantified by needle mass to projected area ratio) in the E treatment compared to the A treatment. Statistically significant differences for most of the investigated morphological parameters were found in young needles in the well irradiated sun-adapted crown parts, particularly under water-limiting soil conditions in 2003. This was likely a result of different water relations in E compared to A trees as investigated under temperate water stress (Kuper et al. in Biol Plantarum 50:603–609, 2006). Furthermore, E trees had much higher absorbing root area, which modified and enhanced root:shoot as well as root:conductive stem area proportions. These hydraulic properties and early seasonal stimulation of photosynthesis forced advanced needle development in E trees, particularly under limited soil water conditions. The number of needles per unit shoot length was found to be unaffected by elevated [CO2].  相似文献   

13.
Meta-analysis is being increasingly used as a tool for integrating data from different studies of complex phenotypes, because the power of any one study to identify causal loci is limited. We applied a novel meta-analytical approach (Loesgen et al. in Genet Epidemiol 21(Suppl 1):S142–S147, 2001) in compiling results from four studies of rheumatoid arthritis in Caucasians including two studies from NARAC (Jawaheer et al. in Am J Hum Genet 68:927–936, 2001; Jawaheer et al. in Arthritis Rheum 48:906–916, 2003), one study from the UK (MacKay et al. in Arthritis Rheum 46:632–639, 2001) and one from France (Cornelis et al. in Proc Natl Acad Sci USA 95:10746–10750, 1998). For each study, we obtained NPL scores by performing interval mapping (2 cM intervals) using GeneHunter2 (Kruglyak et al. in Am J Hum Genet 58:1347–1363, 1996; Markianos et al. in Am J Hum Genet 68:963–977, 2001). The marker maps differed among the three consortium groups, therefore, the marker maps were aligned after the interval mapping was completed and the NPL scores that were within 1 cM of each other were combined using the method of Loesgen et al. (Genet Epidemiol 21(Suppl 1):S142–S147, 2001) by calculating the weighted average of the NPL score. This approach avoids some problems in analysis encountered by using GeneHunter2 when some markers in the sample are not genotyped. This procedure provided marginal evidence (P<0.05) of linkage on chromosome 1, 2, 5 and 18, strong evidence (P<0.01) on chromosomes 8 and 16, and overwhelming evidence in the HLA region of chromosome 6.  相似文献   

14.
The Macroalgal flora of the Transition Zone of the eastern part of the Gulf of Finland was studied between 2003 and 2008. Sixteen species were found from a depth of 0.5–5 m. Three species (Cladophora aegagropila, Pseudolithoderma subextensum and Hildenbrandtia rubra) are listed as rare in The Red Data Book of Nature of the Leningrad Region (Tzvelev, 2000). Nine species are recorded here for the first time in Transition Zone of eastern Gulf of Finland. The dominant species growing at a 0.5–1.5 m depth was the green alga Cladophora glomerata. Our study shows that in 2003–2008 in the shallow (0.5–1.5 m) zone of the eastern Gulf of Finland, the biomass of C. glomerata peaks several times in a season reaching 450 ± 130 g DW m−2. Our study corrects earlier data for the species composition of macroalgae and describes their depth and horizontal distribution in the Gulf of Finland.  相似文献   

15.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   

16.
We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh–Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified “caricature” of Noble (J. Physiol. Lond. 160:317–352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177–210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler–Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method.  相似文献   

17.
 We evaluated the hypothesis that photosynthetic traits differ between leaves produced at the beginning (May) and the end (November–December) of the rainy season in the canopy of a seasonally dry forest in Panama. Leaves produced at the end of the wet season were predicted to have higher photosynthetic capacities and higher water-use efficiencies than leaves produced during the early rainy season. Such seasonal phenotypic differentiation may be adaptive, since leaves produced immediately preceding the dry season are likely to experience greater light availability during their lifetime due to reduced cloud cover during the dry season. We used a construction crane for access to the upper canopy and sampled 1- to 2-month-old leaves marked in monthly censuses for six common tree species with various ecological habits and leaf phenologies. Photosynthetic capacity was quantified as light- and CO2-saturated oxygen evolution rates with a leaf-disk oxygen electrode in the laboratory (O2max) and as light-saturated CO2 assimilation rates of intact leaves under ambient CO2 (Amax). In four species, pre-dry season leaves had significantly higher leaf mass per unit area. In these four species, O2max and Amax per unit area and maximum stomatal conductances were significantly greater in pre-dry season leaves than in early wet season leaves. In two species, Amax for a given stomatal conductance was greater in pre-dry season leaves than in early wet season leaves, suggesting a higher photosynthetic water-use efficiency in the former. Photosynthetic capacity per unit mass was not significantly different between seasons of leaf production in any species. In both early wet season and pre-dry season leaves, mean photosynthetic capacity per unit mass was positively correlated with nitrogen content per unit mass both within and among species. Seasonal phenotypic differentiation observed in canopy tree species is achieved through changes in leaf mass per unit area and increased maximum stomatal conductance rather than by changes in nitrogen allocation patterns. Received: 7 March 1996 / Accepted: 1 August 1996  相似文献   

18.
An efficient, simple micropropagation method was developed for Alocasia amazonica using corms in semisolid and liquid cultures. Explants were cultured onto Murashige and Skoog (MS) medium (Murashige and Skoog, Physiol. Plant. 15:473–497, 1962) supplemented with different cytokinins (Benzyladenine [BA, 2.22–13.32 μM], kinetin [2.32–13.95 μM], Thidiazuron [TDZ, 0.45–4.54 μM]) and cytokinin in combination with auxins [naphthalene acetic acid (NAA, 0.54–5.37 μM)/indole acetic acid (IAA, 0.57–5.71 μM)/indole butyric acid (IBA, 0.49–4.9 μM)]. All supplementary-induced shoot proliferation and the optimal results was on the medium supplemented with 2.27 μM TDZ, which induced 5.1 shoots per explant. Among the different concentrations of sucrose (0–120 g l−1) tested for shoot proliferation, 30 g l−1 was found suitable for corm cultures of Alocasia amazonica. The optimal shoot proliferation and biomass values were with the plantlets grown at 30 μmol m−2 s−1 photosynthetic photon flux (PPF) and 25°C. Liquid cultures found suitable for shoot proliferation and biomass accumulation was compared to semisolid cultures. Comparative studies of bioreactor systems [continuous immersion (with or without net) and temporary immersion in liquid media using ebb and flood] revealed that shoot multiplication and growth were greatest with the raft bioreactor system. Plantlets (cormlets) from the bioreactor were hydroponically cultured for 30 days, and 100% of plants were acclimatized successfully. The simple efficient method of production of plantlets (cormlets) is useful for large-scale multiplication of this important ornamental plant. An erratum to this article can be found at  相似文献   

19.
ABSTRACT

Drought responses, leaf area index (LAI), leaf characteristics and light extinction coefficient (k) were analysed in thinned and unthinned Turkey oak (Quercus cerris L.) stands at two sites: Valsavignone, in the Apennines, with a mild climate, and Caselli, near the Tyrrhenian coast, with a longer and more accentuated dry period in the summer. Turkey oak showed a good adaptability to drought due to a series of modifications in leaf characteristics, canopy properties and biomass allocation such as leaf area reduction, increased leaf thickness, smaller number of leaves and, at stand level, lower LAI, leaf biomass and LWR values and higher light extinction coefficients. In spite of the better environmental conditions and the higher LAI values, productivity was lower in the wet site. The differences in Turkey oak canopy properties, light extinction coefficients, LAI and their relations with drought and productivity are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号