首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine-induced bronchoconstriction is a well-recognized feature of atopic asthma. Adenosine acts through four different G protein-coupled receptors to produce a myriad of physiological effects. To examine the contribution of the A(3) adenosine receptor to adenosine-induced bronchoconstriction and to assess the contribution of mast cells to this process, we quantified airway responsiveness to aerosolized adenosine in wild-type, A(3) receptor-deficient, and mast cell-deficient mice. Compared with the robust airway responses elicited by adenosine in wild-type mice, both A(3)-deficient and mast cell-deficient mice exhibited a significantly attenuated response compared with their respective wild-type controls. Histological examination of the airways 4 h after adenosine exposure revealed extensive degranulation of airway mast cells as well as infiltration of neutrophils in wild-type mice, whereas these findings were much diminished in A(3)-deficient mice and were not different from those in PBS-treated controls. These data indicate that the airway responses to aerosolized adenosine in mice occur largely through A(3) receptor activation and that mast cells contribute significantly to these responses, but that activation of additional adenosine receptors on a cell type(s) other than mast cells also contributes to adenosine-induced airway responsiveness in mice. Finally, our findings indicate that adenosine exposure can result in A(3)-dependent airway inflammation, as reflected in neutrophil recruitment, as well as alterations in airway function.  相似文献   

2.
We administered intravenous adenosine to 11 neonatal rabbits. Adenosine depressed respiration in 10 of 11 rabbits. For the group as a whole the adenosine-induced respiratory depression was highly significant (p less than 0.001). After aminophylline administration to the same animals the respiratory effect of intravenous adenosine was abolished in 3 animals. In 7 animals the effect of adenosine was reversed and respiratory stimulation was observed. After aminophylline adenosine produced a significant (p less than 0.001) increase in respiration in the group studied. The alteration of responses to intravenous adenosine by aminophylline in neonatal rabbits is similar to the effect of aminophylline on respiratory responses to hypoxia in neonates. Such an effect of aminophylline and other methylxanthines on adenosine actions, possibly central in site may explain their beneficial effect in the treatment of apnoea in the human neonate.  相似文献   

3.
Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers.  相似文献   

4.
5.
Adenosine has been shown to initiate apoptosis through different mechanisms: (i) activation of adenosine receptors, (ii) intracellular conversion to AMP and stimulation of AMP-activated kinase, (iii) conversion to S-adenosylhomocysteine (AdoHcy), which is an inhibitor of S-adenosylmethionine (AdoMet)-dependent methyltransferases. Since the pathways involved are still not completely understood, we further investigated the role of AdoHcy hydrolase in adenosine-induced apoptosis. In HepG2 cells, adenosine induced caspase-like activity and DNA fragmentation, a marker of apoptosis. These effects were potentiated by co-incubation with homocysteine or adenosine deaminase inhibitor, pentostatin, and were mimicked by inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde (Adox). Adenosine-induced effects were significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, whereas inhibitors of adenosine kinase did not affect adenosine-induced changes. Various adenosine receptor agonists and AICAR, an activator of AMP-activated kinase, did not mimic the effect of adenosine. Thus, adenosine-induced apoptosis is likely due to intracellular action of AdoHcy and independent of AMP-activated kinase and adenosine receptors. Because elevated AdoHcy levels are associated with reduced mRNA methylation, we studied mRNA expression in Adox-treated cells by microarray analysis. Since several p53-target genes and other apoptosis-related genes were up-regulated by Adox, we conclude that AdoHcy is involved in adenosine-induced apoptosis by altering gene expression.  相似文献   

6.
The content of cAMP was measured in monocytes treated with fMet-Leu-Phe and adenosine, either singly or in combination. Adenosine caused a small and variable rise in cAMP, which was considerably less than that caused by fMet-Leu-Phe. The rise induced by peptide plus adenosine was twice the sum of the increases caused by each agent alone. An inhibitor of phosphodiesterase also enhanced the adenosine-induced rise in cAMP. The data suggest that the increase in cAMP by adenosine-induced cyclase activation is limited by the activity of phosphodiesterase, and that the latter can be inhibited by fMet-Leu-Phe.  相似文献   

7.
Adenosine promotes IL-6 release in airway epithelia   总被引:1,自引:0,他引:1  
In the airway epithelia, extracellular adenosine modulates a number of biological processes. However, little is known about adenosine's role in the inflammatory responses of airway epithelial cells. Recent studies suggest that the chronic elevation of extracellular adenosine in mice leads to pulmonary inflammation and fibrosis. Yet, the underlying molecular mechanism has not been well understood and little attention has been paid to the role of airway epithelia in adenosine-triggered inflammation. In the present work, we examined the role of adenosine in releasing IL-6 from airway epithelia. In Calu-3 human airway epithelial cells, apical but not basolateral adenosine elicited robust, apically polarized release of IL-6, along with proinflammatory IL-8. Both protein kinase A and protein kinase C mediated the adenosine-induced IL-6 release, at least partly via phosphorylation of CREB. Protein kinase C appeared to phosphorylate CREB through activating ERK. In addition, A2A but not A2B adenosine receptors were specifically required for the adenosine-induced IL-6 release. Furthermore, in rat bronchoalveolar lavage fluid, adenosine triggered the release of IL-6 as well as proinflammatory IL-1beta. Adenosine also mediated the release of a considerable portion of the LPS-induced IL-6 in rat bronchoalveolar lavage fluid. Our findings provide a possible molecular link between extracellular adenosine elevation and lung inflammation and fibrosis.  相似文献   

8.
9.
We studied the effect of adenosine on the Ba(2+)-sensitive K(IR) channels in the smooth muscle cells isolated from the small-diameter (<100microm) coronary arteries of rabbit. Adenosine increased K(IR) currents in concentration-dependent manner (EC(50)=9.4+/-1.4microM, maximum increase of 153%). The adenosine-induced stimulation of K(IR) current was blocked by adenylyl cyclase inhibitor, SQ22536 and was mimicked by adenylyl cyclase activator, forskolin. The adenosine-induced increase of current was blocked by cyclic AMP-dependent protein kinase (PKA) inhibitors, KT 5720 and Rp-8-CPT-cAMPs. The adenosine-induced increase of K(IR) currents was blocked by an A(3)-selective antagonist MRS1334, while the antagonists of other subtypes (DPCPX for A(1), ZM241385 for A(2A), and alloxazine for A(2B)) were all ineffective. Furthermore, an A(3)-selective agonist, 2-Cl-IB-MECA induced increase of K(IR) currents. We also examined the effect of adenosine on coronary blood flow (CBF) rate by using the Langendorff-perfused heart. In the presence of glibenclamide to exclude the effects of ATP-sensitive K(+) (K(ATP)) channels, CBF was increased by adenosine (10microM), which was blocked by the addition of Ba(2+) (50microM). Above results suggest that adenosine increases K(IR) current via A(3) subtype through the activation of PKA in rabbit small-diameter coronary arterial smooth muscle cells.  相似文献   

10.
Adenosine is a promising cytotoxic reagent for tumors, long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been indicated to play critical roles in tumorigenesis, ILF3 has been recognized as a MEG3-binding protein, however, the roles of adenosine and MEG3 on hepatoma are still ambiguous. To clarify the effects of MEG3 on the adenosine-induced cytotoxicity in hepatoma, MEG3 and ILF3 lentivirus were transduced into human hepatoma HepG2 cells to stimulate overexpression of MEG3 (OE MEG3) and overexpression of ILF3 (OE ILF3), furthermore, ILF3 small interfering RNA (siRNA) was also applied to downregulate the expression of ILF3. In this study, autophagy was markedly inhibited by low concentration of adenosine, which present by not only inhibited transformation from LC3-I to LC3-II and autophagosomes formation, but also the elevation of mTOR and reduction of beclin-1 proteins. Furthermore, low concentration of adenosine also exerted marked cytotoxicity representing induced cell apoptosis together with reductions of cell viability and migration, which were also markedly enhanced by OE MEG3. Novelly and excitingly, adenosine markedly stimulated MEG3 expression, OE MEG3 markedly decreased the ILF3 expression in HepG2 cells, and the adenosine-induced autophagy inhibition, together with the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were also boosted by OE MEG3. More interestingly, OE ILF3 increased autophagy, whereas downregulated ILF3, especially in the case of adenosine, led to marked autophagy inhibition by decreasing beclin-1. The present study demonstrates autophagy inhibition is involved in the adenosine-induced cytotoxicity in HepG2 cells, the cytotoxicity can be synergized by OE MEG3 via downregulated ILF3 to activate PI3K/Akt/mTOR and inactivate the beclin-1 signaling pathway. In conclusion, MEG3 and inhibition of autophagy might be potential targets for augmenting adenosine-induced cytotoxicity in hepatoma.  相似文献   

11.
We have examined the mechanism of action of adenosine, a naturally occurring nucleoside that has profound effects on lymphocyte function. Adenosine (0.01 micrometer to 10 micrometer) increased lymphocytes cAMP levels in a dose-dependent fashion with a maximal (10 micrometer) increase of about 4-fold, whereas adenine, guanosine, and inosine had no effect on lymphocyte cAMP levels at concentrations of 100 micrometer. Adenosine appears to act on the cell surface since 1) 2-chloroadenosine, a poorly metabolized adenosine analogue, was as active as adenosine and 2) dipyridamole, which markedly inhibited [3H]-adenosine uptake by human lymphocytes, did not affect adenosine-induced accumulation of cAMP. The specificity of the adenosine effect was established by showing that the methylxanthine derivatives, theophylline and 3-isobutyl-1-methylxanthine (IBMX), specifically block the accumulation of cAMP in lymphocytes induced by adenosine. Theophylline is a competitive inhibitor of the effect of adenosine, with an estimated dissociation constant of theophylline-receptor complex of about 6.3 X 10(-7) M. The results suggest that adenosine increases the intracellular cAMP content of lymphocytes as a result of its interaction with a specific membrane receptor which results in the activation of adenylate cyclase.  相似文献   

12.
Adenosine is known to stimulate chloride secretion by mouse jejunum. Whereas the receptor on the basolateral side is believed to be A2B, the receptor involved in the luminal effect of adenosine has not been identified. We found that jejuna expressed mRNA for all adenosine receptor subtypes. In this study, we investigated the stimulation of chloride secretion by adenosine in jejuna derived from mice lacking the adenosine receptors of A1 (A1R) and A2A (A(2A)R) or control littermates. The jejunal epithelium was mounted in a Ussing chamber, and a new method on the basis of impedance analysis was used to calculate the short-circuit current (I(sc)) values. Chloride secretion was assessed by the I(sc) after inhibition of the sodium-glucose cotransporter by adding phloridzin to the apical bathing solution. The effect of apical adenosine on chloride secretion was lost in jejuna from mice lacking the A1R. There was no difference in the response to basolaterally applied adenosine or to apical forskolin. Furthermore, in jejuna from control mice, the effect of apical adenosine was also abolished in the presence of 8-cyclopentyl-1,3-dipropylxanthine, a specific A1R antagonist. Responses to adenosine were identical in jejuna from control and A(2A)R knockout mice. This study demonstrates that A1R (and not A(2A)R) mediates the enhancement of chloride secretion induced by luminal adenosine in mice jejunum.  相似文献   

13.
14.
Adenosine, as a ubiquitous metabolite, mediates many physiological functions via activation of plasma membrane receptors. Mechanisms of most of its physiological roles have been studied extensively, but research on adenosine-induced apoptosis (AIA) has only started recently. In this study we demonstrate that adenosine dose-dependently triggered apoptosis of cultured baby hamster kidney (BHK) cells. Adenosine-induced apoptotic cell death was characterized by DNA laddering, changes in nuclear chromatin morphology and phosphatidylserine staining. Apoptosis was also quantified by flow cytometry. Results suggest the involvement of adenosine A1 and A3 receptors as well as equilibrative nucleoside transporters in apoptosis induced by adenosine. These results indicate a receptor-transporter co-signaling mechanism in AIA in BHK cells. The involvement of A1 and A3 receptors also implies a possible apoptotic pathway mediated by G protein-coupled receptors.  相似文献   

15.
—Adenylate cyclase activity of permeabilized neuroblastoma cells was measured by the conversion of [α32P]ATP into labelled cyclic AMP. Adenosine (10?6 - 10?4m ) induced a dose-dependent increase in cyclic AMP formation. This effect could not be accounted for either by an adenosine-induced inhibition of the phosphodiesterase activity present in the enzyme preparation, or by a direct conversion of adenosine into cyclic AMP. This indicates that the observed increase in cyclic AMP accumulation reflected an activation of adenylate cyclase. Adenosine is partially metabolized during the course of incubation with the enzyme preparation. However, none of the identified non-phosphorylated adenosine metabolites were able to induce an adenylate cyclase activation. This suggests that adenosine itself is the stimulatory agent. The apparent Km of the adenylate cyclase for adenosine was 5 ± 10?6-10?5m . Maximal activation represented 3-4 times the basal value (10-100 pmol cyclic AMP formed/10 min/mg protein). The adenosine effect was stereospecific, since structural analogues of adenosine were inactive. Adenosine increased the maximal velocity of the adenylate cyclase reaction. The stimulatory effect of adenosine was inhibited by theophylline. Prostaglandin PGE1 had a stimulatory effect much more pronounced than that of adenosine (6-10-fold the basal value at 10?6m ). Dopamine and norepinephrine induced a slight adenylate cyclase activation which was not potentiated by adenosine. It is concluded that adenosine is able to activate directly neuroblastoma cell adenylate cyclase. It seems very likely that such a direct activation is also present in intact nervous tissue and account, at least partly, for the observed cyclic AMP accumulation in response to adenosine.  相似文献   

16.
Adenosine inhalation produces immediate bronchoconstriction in asthmatics but not in normal subjects. The bronchospastic effect of adenosine is largely mediated through adenosine-induced mast cell activation, the mechanism of which is poorly understood due to limitations in culturing human primary mast cells. Here, we show that human umbilical cord blood -derived mast cells incubated with the Th2 cytokine IL-4 develop increased sensitivity to adenosine. Potentiation of anti-IgE- induced and calcium ionophore/PMA-induced degranulation was augmented in mast cells cultured with IL-4, and this effect was reduced or abolished by pre-treatment with A(2B)siRNA and selective A(2B) receptor antagonists, respectively. IL-4 incubation resulted in the increased expression of A(2B) and reduced expression of A(2A) adenosine receptors on human mast cells. These results suggest that Th2 cytokines in the asthmatic lung may alter adenosine receptor expression on airway mast cells to promote increased responsiveness to adenosine.  相似文献   

17.
The concentrations of hypoxanthine and adenosine in ovarian follicular fluid were estimated, using high-performance liquid chromatography, for three groups of mice: 1) pregnant mare's serum gonadotropin (PMSG)-primed mice; 2) PMSG-primed mice 2 h after injection with human chorionic gonadotropin (hCG); and 3) PMSG-primed mice 5 h after injection with hCG. The concentration of hypoxanthine in follicular fluid of Group 1 mice was 2-4 mM and of adenosine was 0.35-0.70 mM. There was no difference in the concentrations of these purines in the follicular fluid of Group 2 mice, in which maturation had been induced with hCG but the samples were taken just before germinal vesicle breakdown (GVBD). Therefore, a decrease in the concentrations of these purines does not appear to induce GVBD. A significant decrease in the concentrations of hypoxanthine and adenosine was observed in the follicular fluid of Group 3 mice in which GVBD had already occurred. This decrease was probably a result of an increase in follicular fluid volume. Adenosine had a significant, but transient, effect in maintaining both cumulus cell-enclosed and denuded oocytes in meiotic arrest; all oocytes had undergone GVBD by 100 min incubation in 1 mM adenosine. When GVBD was assessed after 3 h culture, concentrations up to 5 mM adenosine failed to maintain meiotic arrest. In contrast, hypoxanthine (2-5 mM) had a dose-dependent effect in maintaining both cumulus cell-enclosed and denuded oocytes in meiotic arrest that was sustained up to 24 h. Cumulus cell-enclosed oocytes were always more sensitive to hypoxanthine than were denuded oocytes. There was a strong synergistic effect of adenosine and hypoxanthine in maintaining meiotic arrest; 4 mM hypoxanthine and 0.75 mM adenosine maintained more than 95% of the oocytes in meiotic arrest for culture periods up to 24 h. This action was completely reversible by withdrawal of the purines. It is hypothesized that the synergistic effect of these purines may result both by promoting cyclic adenosine monophosphate synthesis (adenosine), and by preventing its hydrolysis (hypoxanthine).  相似文献   

18.
Adenosine, at physiologic concentrations, inhibits in vitro IgE-mediated human basophil histamine release in a dose-dependent fashion. The inhibition dose-response curve is paralleled by an adenosine-induced increase in cAMP levels of human leukocyte preparations. Further evidence that the adenosine effect is related to changes in cAMP levels is that the nucleoside inhibits only in the first stage of antigen-induced histamine release and fails to inhibit the release caused by ionophore A23187. A poorly metabolized derivative of adenosine, 2-chloroadenosine inhibits as effectively as adenosine; dipyridamole, which blocks adenosine uptake, does not impair the inhibition caused by adenosine. Finally, theophylline, which is a competitive antagonist of adenosine in human lymphocytes also blocks the inhibition of release caused by adenosine. These data suggest that adenosine acts via a specific cell-surface receptor linked to adenylate cyclase. It appears that the human basophil has a specific receptor for adenosine and that this nucleoside may modulate the in vivo release of the mediators of immediate hypersensitivity reactions.  相似文献   

19.
Glomerular filtration rate (GFR) in response to adenosine precursor, NAD, and glomeruli contractility in response to adenosine were evaluated in streptozotocin-induced diabetic rats with severe (blood glucose 27.8 +/- 1.2 mmol/L) and moderate hyperglycaemia (18.2 +/- 0.9 mmol/L) compared with nondiabetic (ND)-rats. In anaesthetised rats, basal GFR was greater in moderately diabetic rats compared with severely diabetic rats (p < 0.05) and ND-rats (p < 0.02). Intravenous infusion of 5 nmol x min(-1) x kg(-1) NAD reduced GFR and renal plasma flow (RPF) in diabetic rats but had no effect on these parameters in ND-rats. Moreover, NAD-induced reduction of GFR and RPF was greater in rats with severe diabetes (41% and 30%, respectively) than in with moderate diabetes (25% and 26%, respectively). Theophylline (0.2 micromol x min(-1) x kg(-1) ) abolished renal response to NAD. Isolated glomeruli contraction in response to adenosine, assessed by glomerular 3H-inulin space reduction, was lowered in moderately diabetic-group and enhanced in severely diabetic-group. compared with ND-group (p < 0.05). Adenosine A1-receptor antagonist DPCPX inhibited adenosine-induced glomeruli contraction. This differential response of diabetic renal glomeruli to adenosine suggests that impaired glomerular contractility in response to adenosine could be responsible for hyperfiltration in moderate diabets, whereas, the increased adenosine-dependent contractility of glomeruli in severe diabetes may increase the risk of acute renal failure in this condition.  相似文献   

20.
Extracellular adenosine disrupted mitochondrial membrane potentials in HuH-7 cells, a Fas-deficient human hepatoma cell line, and the effect was inhibited by the adenosine transporter inhibitor dipyridamole or by overexpressing Bcl-XL. Adenosine downregulated the expression of mRNAs and proteins for Bcl-XL and inhibitor of apoptosis protein 2 (IAP2) to directly inhibit caspase-3, -7, and -9, but it otherwise upregulated the expression of mRNA and protein for DIABLO, an inhibitor of IAPs. Those adenosine effects were attenuated by dipyridamole. Caspase-3 and -8 were implicated in adenosine-induced HuH-7 cell death, and adenosine actually activated caspase-3 without caspase-9 activation. The caspase-3 activation was inhibited by overexpressing Bcl-XL or IAP2. Taken together, the results of the present study indicate that intracellularly transported adenosine activates caspase-3 by neutralizing caspase-3 inhibition due to IAP as a result of decreased IAP2 expression and reduced IAP activity in response to increased DIABLO expression and perhaps DIABLO release from damaged mitochondria, in addition to caspase-8 activation. This represents further insight into adenosine-induced HuH-7 cell apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号