首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.  相似文献   

2.
RNA 3'-terminal phosphate cyclases are evolutionarily conserved enzymes catalysing conversion of the 3'-terminal phosphate in RNA to the 2',3'-cyclic phosphodiester. Their biological role remains unknown. The yeast Saccharomyces cerevisiae contains a gene encoding a protein with strong sequence similarity to the characterized cyclases from humans and Escherichia coli. The gene, named RCL1 (for RNA terminal phosphate cyclase like), is essential for growth, and its product, Rcl1p, is localized in the nucleolus. Depletion or inactivation of Rcl1p impairs pre-rRNA processing at sites A(0), A(1) and A(2), and leads to a strong decrease in 18S rRNA and 40S ribosomal subunit levels. Immunoprecipitations indicate that Rcl1p is specifically associated with the U3 snoRNP, although, based on gradient analyses, it is not its structural component. Most of Rcl1p sediments in association with the 70-80S pre-ribosomal particle and a 10S complex of unknown identity. Proteins similar to Rcl1p are encoded in genomes of all eukaryotes investigated and the mouse orthologue complements yeast strains depleted of Rcl1p. Possible functions of Rcl1p in pre-rRNA processing and its relationship to the RNA 3'-phosphate cyclase are discussed.  相似文献   

3.
Ribosome biogenesis in eukaryotes is a highly regulated process involving hundreds of transiently associated proteins and RNAs. Although most of these assembly factors have been genetically linked to specific step(s) in the biogenesis pathway, their biochemical functions are generally unknown. Bms1, an essential protein in yeast, is the only known GTPase required for biosynthesis of the 40S ribosomal subunit and interacts with Rcl1, an essential protein suggested to be an endonuclease. Here, we show thermodynamic coupling in the binding of Bms1 to GTP, Rcl1, and U3 small nucleolar RNA (snoRNA), an essential RNA that base pairs to pre-rRNA. Rcl1 binding to preribosomes is severely limited in yeast cells expressing a Bms1 mutant defective for Rcl1 binding. Additionally, we provide evidence that the C-terminal domain of Bms1 acts as an intramolecular GTPase-activating protein. Together, these data suggest that Bms1 functions as a GTP-regulated switch to deliver Rcl1 to preribosomes, providing molecular insight into preribosome assembly.  相似文献   

4.
Bms1p and Tsr1p define a novel family of proteins required for synthesis of 40S ribosomal subunits in Saccharomyces cerevisiae. Both are essential and localize to the nucleolus. Tsr1p shares two extended regions of similarity with Bms1p, but the two proteins function at different steps in 40S ribosome maturation. Inactivation of Bms1p blocks at an early step, leading to disappearance of 20S and 18S rRNA precursors. Also, slight accumulation of an aberrant 23S product and significant 35S accumulation are observed, indicating that pre-rRNA processing at sites A0, A1, and A2 is inhibited. In contrast, depletion of Tsr1p results in accumulation of 20S rRNA. Because processing of 20S to 18S rRNA occurs in the cytoplasm, this suggests that Tsr1p is required for assembly of a transport- or maturation-competent particle or is specifically required for transport of 43S pre-ribosomal particles, but not 60S ribosome precursors, from the nucleus to the cytosol. Finally, Bms1p is a GTP-binding protein, the first found to function in ribosome assembly or rRNA processing.  相似文献   

5.
6.
Rok1p is a putative RNA helicase required for rRNA processing.   总被引:21,自引:7,他引:14       下载免费PDF全文
The synthesis of ribosomes involves many small nucleolar ribonucleoprotein particles (snoRNPs) as transacting factors. Yeast strains lacking the snoRNA, snR10, are viable but are impaired in growth and delayed in the early pre-rRNA cleavages at sites A0, A1, and A2, which lead to the synthesis of 18S rRNA. The same cleavages are inhibited by genetic depletion of the essential snoRNP protein Gar1p. Screens for mutations showing synthetic lethality with deletion of the SNR10 gene or with a temperature-sensitive gar1 allele both identified the ROK1 gene, encoding a putative, ATP-dependent RNA helicase of the DEAD-box family. The ROK1 gene is essential for viability, and depletion of Rok1p inhibits pre-rRNA processing at sites A0, A1, and A2, thereby blocking 18S rRNA synthesis. Indirect immunofluorescence by using a ProtA-Rok1p construct shows the protein to be predominantly nucleolar. These results suggest that Rok1p is required for the function of the snoRNP complex carrying out the early pre-rRNA cleavage reactions.  相似文献   

7.
8.
9.
The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.  相似文献   

10.
We have isolated and characterized Mpp10p, a novel protein component of the U3 small nucleolar ribonucleoprotein (snoRNP) from the yeast Saccharomyces cerevisiae. The MPP10 protein was first identified in human cells by its reactivity with an antibody that recognizes specific sites of mitotic phosphorylation. To study the functional role of MPP10 in pre-rRNA processing, we identified the yeast protein by performing a GenBank search. The yeast Mpp10p homolog is 30% identical to the human protein over its length. Antibodies to the purified yeast protein recognize a 110-kDa polypeptide in yeast extracts and immunoprecipitate the U3 snoRNA, indicating that Mpp10p is a specific protein component of the U3 snoRNP in yeast. As a first step in the genetic analysis of Mpp10p function, diploid S. cerevisiae cells were transformed with a null allele. Sporulation and tetrad analysis indicate that MPP10 is an essential gene. A strain was constructed where Mpp10p is expressed from a galactose-inducible, glucose- repressible promoter. After depletion of Mpp10p by growth in glucose, cell growth is arrested and levels of 18S and its 20S precursor are reduced or absent while the 23S and 35S precursors accumulate. This pattern of accumulation of rRNA precursors suggests that Mpp10p is required for cleavage at sites A0, A1, and A2. Pulse-chase analysis of newly synthesized pre-rRNAs in Mpp10p-depleted yeast confirms that little mature 18S rRNA formed. These results reveal a novel protein essential for ribosome biogenesis and further elucidate the composition of the U3 snoRNP.  相似文献   

11.
Ribosome biogenesis is a conserved process in eukaryotes that requires a large number of small nucleolar RNAs and trans-acting proteins. The Saccharomyces cerevisiae MRD1 (multiple RNA-binding domain) gene encodes a novel protein that contains five consensus RNA-binding domains. Mrd1p is essential for viability. Mrd1p partially co-localizes with the nucleolar protein Nop1p. Depletion of Mrd1p leads to a selective reduction of 18 S rRNA and 40 S ribosomal subunits. Mrd1p associates with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs and is necessary for the initial processing at the A(0)-A(2) cleavage sites in pre-rRNA. The presence of five RNA-binding domains in Mrd1p suggests that Mrd1p may function to correctly fold pre-rRNA, a requisite for proper cleavage. Sequence comparisons suggest that Mrd1p homologues exist in all eukaryotes.  相似文献   

12.
The essential Rcl1p and Bms1p proteins form a complex required for 40S ribosomal subunit maturation. Bms1p is a GTPase and Rcl1p has been proposed to catalyse the endonucleolytic cleavage at site A2 separating the pre-40S and pre-60S maturation pathways. We determined the 2.0 Å crystal structure of Bms1p associated with Rcl1p. We demonstrate that Rcl1p nuclear import depends on Bms1p and that the two proteins are loaded into pre-ribosomes at a similar stage of the maturation pathway and remain present within pre-ribosomes after cleavage at A2. Importantly, GTP binding to Bms1p is not required for the import in the nucleus nor for the incorporation of Rcl1p into pre-ribosomes, but is essential for early pre-rRNA processing. We propose that GTP binding to Bms1p and/or GTP hydrolysis may induce conformational rearrangements within the Bms1p-Rcl1p complex allowing the interaction of Rcl1p with its RNA substrate.  相似文献   

13.
Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3′-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 Å crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.  相似文献   

14.
We report the discovery and characterisation of a novel nucleolar protein of Saccharomyces cerevisiae. We identified this protein encoded by ORF YIL019w, designated in SGD base as Faf1p, in a two hybrid interaction screen using the known nucleolar protein Krr1 as bait. The presented data indicate that depletion of the Faf1 protein has an impact on the 40S ribosomal subunit biogenesis resulting from a decrease in the production of 18S rRNA. The primary defect is apparently due to inefficient processing of 35S rRNA at the A(0), A(1), and A(2) cleavage sites.  相似文献   

15.
Synthesis of rRNA in eukaryotes involves the action of a large population of snoRNA-protein complexes (snoRNPs), which create modified nucleotides and participate in cleavage of pre-rRNA. The snoRNPs mediate these functions through direct base pairing, in many cases through long complementary sequences. This feature suggests that RNA helicases may be involved in the binding and release of snoRNPs from pre-rRNA. In this study, we determined that the DEAD box helicase Has1p, a nucleolar protein required for the production of 18S rRNA, copurifies with the snR30/U17 processing snoRNP but is also present with other snoRNPs. Blocking Has1p expression causes a substantial increase in snoRNPs associated with 60S-90S preribosomal RNP complexes, including the U3 and U14 processing snoRNPs and several modifying snoRNPs examined. Cosedimentation persisted even after deproteinization. This effect was not observed with depletion of two nonhelicase proteins, Esf1p and Dim2p, that are also required for 18S rRNA production. Point mutations in ATPase and helicase motifs of Has1p block U14 release from pre-rRNA. Surprisingly, depletion of Has1p causes a reduction in the level of free U6 snRNP. The results indicate that the Has1p helicase is required for snoRNA release from pre-rRNA and production of the U6 snRNP.  相似文献   

16.
The small subunit (SSU) processome is an evolutionarily conserved ribonucleoprotein (RNP) complex that consists of U3 snoRNA and at least 40 protein components. The SSU processome is required for the generation of 18S rRNA in the budding yeast Saccharomyces cerevisiae. In this study we demonstrate that two essential components of the SSU processome, Utp8p and Utp9p, must interact directly for the SSU processome to function properly. Disruption of the Utp8p-Utp9p interaction by mutation of the respective interacting domain led to a compromised ability of yeast cells to process 35S pre-rRNA into 18S pre-rRNA. Loss of the Utp8p-Utp9p interaction also led to a decrease in the amount of Utp8p that interacted with U3 small nucleolar RNAs (snoRNAs) but did not affect the amount of Utp9p bound to U3 snoRNA, suggesting that Utp8p associates with the SSU processome by virtue of its interaction with Utp9p. Together, our data support a model where Utp8p and Utp9p must interact directly and functionally in the U3-containing SSU processome for optimal rRNA biosynthesis to occur in budding yeast.  相似文献   

17.
Esf2p is the Saccharomyces cerevisiae homolog of mouse ABT1, a protein previously identified as a putative partner of the TATA-element binding protein. However, large-scale studies have indicated that Esf2p is primarily localized to the nucleolus and that it physically associates with pre-rRNA processing factors. Here, we show that Esf2p-depleted cells are defective for pre-rRNA processing at the early nucleolar cleavage sites A0 through A2 and consequently are inhibited for 18S rRNA synthesis. Esf2p was stably associated with the 5' external transcribed spacer (ETS) and the box C+D snoRNA U3, as well as additional box C+D snoRNAs and proteins enriched within the small-subunit (SSU) processome/90S preribosomes. Esf2p colocalized on glycerol gradients with 90S preribosomes and slower migrating particles containing 5' ETS fragments. Strikingly, upon Esf2p depletion, chromatin spreads revealed that SSU processome assembly and compaction are inhibited and glycerol gradient analysis showed that U3 remains associated within 90S preribosomes. This suggests that in the absence of proper SSU processome assembly, early pre-rRNA processing is inhibited and U3 is not properly released from the 35S pre-rRNAs. The identification of ABT1 in a large-scale analysis of the human nucleolar proteome indicates that its role may also be conserved in mammals.  相似文献   

18.
19.
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. The ways in which these particles are assembled and correctly localized in the dense fibrillar component of the nucleolus remain largely unknown. Recently, the essential Saccharomyces cerevisiae Naf1p protein (encoded by the YNL124W open reading frame) was found to interact in a two-hybrid assay with two core protein components of mature H/ACA snoRNPs, Cbf5p and Nhp2p (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2001). Here we show that several H/ACA snoRNP components are weakly but specifically immunoprecipitated with epitope-tagged Naf1p, suggesting that the latter protein is involved in H/ACA snoRNP biogenesis, trafficking, and/or function. Consistent with this, we find that depletion of Naf1p leads to a defect in 18S rRNA accumulation. Naf1p is unlikely to directly assist H/ACA snoRNPs during pre-rRNA processing in the dense fibrillar component of the nucleolus for two reasons. Firstly, Naf1p accumulates predominantly in the nucleoplasm. Secondly, Naf1p sediments in a sucrose gradient chiefly as a free protein or associated in a complex of the size of free snoRNPs, whereas extremely little Naf1p is found in fractions containing preribosomes. These results are more consistent with a role for Naf1p in H/ACA snoRNP biogenesis and/or intranuclear trafficking. Indeed, depletion of Naf1p leads to a specific and dramatic decrease in the steady-state accumulation of all box H/ACA snoRNAs tested and of Cbf5p, Gar1p, and Nop10p. Naf1p is unlikely to be directly required for the synthesis of H/ACA snoRNP components. Naf1p could participate in H/ACA snoRNP assembly and/or transport.  相似文献   

20.
The isomerization of up to 100 uridines to pseudouridines (Psis) in eukaryotic rRNA is guided by a similar number of box H/ACA small nucleolar RNAs (snoRNAs), each forming a unique small nucleolar ribonucleoprotein particle (snoRNP) with the same four core proteins, NAP57 (also known as dyskerin or Cbf5p), GAR1, NHP2, and NOP10. Additionally, the nucleolar and Cajal body protein Nopp140 (Srp40p) associates with the snoRNPs. To understand the role of these factors in pseudouridylation, we established an in vitro assay system. Short site-specifically (32)P-labeled rRNA substrates were incubated with subcellular fractions, and the conversion of uridine to Psi was monitored by thin-layer chromatography after digestion to single nucleotides. Immunopurified box H/ACA core particles were sufficient for the reaction. SnoRNPs associated quantitatively and reversibly with Nopp140. However, pseudouridylation activity was independent of Nopp140, consistent with a chaperoning role for this highly phosphorylated protein. Although up to 14 bp between the snoRNA and rRNA were required for the in vitro reaction, rRNA pseudouridylation and release occurred in the absence of ATP and magnesium. These data suggest that substrate release takes place without RNA helicase activity but may be aided by the snoRNP core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号