首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotin containing carboxylases in cultured human skin fibroblasts were radioactively labeled by addition of [8,9-3H]biotin to biotin-depleted cell cultures. Three major bands were visualized by fluorography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the fibroblast proteins. These bands corresponded to pyruvate carboxylase (Mr = 125,000), the biotin-containing subunit of methyl crotonyl-CoA carboxylase (Mr = 75,000) and the biotin-containing subunit of propionyl-CoA carboxylase (Mr = 73,000) as judged by molecular weight markers, purified carboxylase protein standards, and interaction with monospecific antisera. Four out of 5 cell lines from patients with classical pyruvate carboxylase deficiency (less than 5% of normal activity) labeled with this technique displayed a normal band in the position of pyruvate carboxylase while one cell line showed complete absence of any labeled protein in this area. These results demonstrate heterogeneity in the etiology of pyruvate carboxylase deficiency.  相似文献   

2.
Insulin receptors purified from human placental membranes by gel-filtration and insulin-agarose affinity chromatography were found to be composed of eight different high molecular weight complexes as identified by nonreducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The subunit stoichiometry of these different high molecular weight forms of the insulin receptor were determined by comparisons of silver-stained gel profiles with the autoradiograms of 125I-insulin specifically cross-linked to the alpha subunit and [gamma-32P]ATP specifically autophosphorylated beta subunit gel profiles. Two-dimensional SDS-polyacrylamide gel electrophoresis in the absence and presence of reductant confirmed the subunit stoichiometries as alpha 2 beta 2, alpha 2 beta beta 1, alpha 2 (beta 1)2, alpha 2 beta, alpha 2 beta 1, alpha 2, alpha beta, and beta, where alpha is the Mr = 130,000 subunit, beta is the Mr = 95,000 subunit, and beta 1 is the Mr = 45,000 subunit. Treatment of the insulin receptor preparations with oxidized glutathione or N-ethylmaleimide prior to SDS-polyacrylamide gel electrophoresis increased the relative amount of the alpha 2 beta 2 complex concomitant with a total disappearance of the alpha 2 beta, alpha 2 beta 1, alpha 2, and free beta forms. The effects of oxidized glutathione were found to be completely reversible upon extensive washing of the treated insulin receptors. In contrast, the effects of N-ethylmaleimide were totally irreversible by washing, consistent with known sulfhydryl alkylating properties of this reagent. The formation of these lower molecular weight insulin receptor subunit complexes was further demonstrated to be due to SDS/heat-dependent intramolecular sulfhydryl-disulfide exchange occurring within the alpha 2 beta 2 complex. These studies demonstrate that the largest disulfide-linked complex (alpha 2 beta 2) is the predominant insulin receptor form purified from the human placenta with the other complexes being generated by proteolysis and by internal subunit dissociation.  相似文献   

3.
The subunit structure of rat liver acetyl-coenzyme-A carboxylase has been studied by polyacrylamide gel electrophoresis in the presence of dodecylsulfate. A number of individual preparations of the enzyme purified by the same procedures exhibited three different types of electrophoretic patterns as follows: first, a single slow-moving protein bands (Mr 230000); secondly, two adjacent fast-moving protein band (M4 124000 and 118 000); finally, all three protein bands. With the use of the [14C]biotin-labelled enzyme, the biotinyl prosthetic group was shown to be associated with the polypeptide of 230000 Mr as well as with that of 124000 Mr, but not with the polypeptide of 118000 Mr. Studies were next made with the labelled enzyme to examine the possibility that the two light polypeptides might have been formed by proteolytic modification of the heavy polypeptide during the procedures used for the purification of the enzyme. Treatment of the enzyme with trypsin or chymotrypsin resulted in cleavage of the heavy polypeptide into two nonidentical polypeptides with molecular weights of approximately 120000. Incubation of the enzyme with proteases derived from rat liver converted the heavy polypeptide into lighter polypeptides of 80000-130000 Mr. Acetyl-CoA carboxylase isolated from crude rat liver extracts by means of immunoprecipitation with specific antibody invariably showed only the heavy polypeptide. The biotin content of the enzyme was found to be 1 mol per 237000 g protein. These results indicate that rat liver acetyl-CoA carboxylase, unlike bacterial and plant biotin enzymes, has only one kind of subunit, which has a molecular weight of 230000 and contains one molecular of biotin. Thus, the mammalian enzyme exhibits a highly integrated subunit structure.  相似文献   

4.
Photoaffinity labeling of (Na+K+)-ATPase with [125I]iodoazidocymarin   总被引:3,自引:0,他引:3  
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources.  相似文献   

5.
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalyzes an essential first step in the conversion of high mannose to hybrid and complex N-glycans (Schachter, H. (1986) Biochem. Cell Biol. 64, 163-181; Oppenheimer, C.L., and Hill, R.L. (1981) J. Biol. Chem. 256, 799-804), i.e. the addition of GlcNAc to (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(Man alpha 1-3)Man beta 1-4GlcNAc-OR to form (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(GlcNAc beta 1-2Man alpha 1- 3)Man beta 1-4GlcNAc-OR. The enzyme has been purified from Triton X-100 extracts of rabbit liver by chromatography on CM-Sephadex, Affi-Gel blue, UDP-hexanolamine-Sepharose, and a novel adsorbent in which UDP-GlcNAc is linked to thiopropyl-Sepharose at the 5-position of uracil. The enzyme exists in crude liver extracts in two molecular weight forms separable on Sephadex G-200. The low molecular weight form was purified 64,000-fold with a specific activity of 19.8 mumol/min/mg. The pure enzyme was free of N-acetylglucosaminyltransferase II-V activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single major band of Mr 45,000 and two minor bands of Mr 54,000 and 50,000. All three bands showed retarded elution from an affinity column in which the acceptor substrate for the transferase was covalently linked to Sepharose. Kinetic analysis indicated a largely ordered sequential mechanism with UDP-GlcNAc binding to the enzyme first and UDP leaving last. Studies with synthetic analogues of the substrate Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc showed that an unsubstituted equatorial hydroxyl on carbon 4 of the beta-linked Man residue was essential for enzyme activity.  相似文献   

6.
S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.  相似文献   

7.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

8.
An improved procedure was developed for the isolation of pyruvate decarboxylase from wheat germ. Its final step, an electrophoresis of the native apoenzyme in concave pore gradient polyacrylamide gels, followed by superficial activity-staining, produced two bands of different molecular masses and chain compositions. The high-molecular-mass band occurred in low quantity and consisted of, probably eight, apparently identical chains of Mr = 33,000, as judged from sodium dodecyl sulfate electrophoreses. The low-molecular-mass band contained two types of chains with Mr alpha = 63,000-65,000 and Mr beta = 61,000-62,000. The N termini of both chains were threonine, whereas their C-terminal sequences were different: alpha, -(Val)-(Ser)-(Ala)-Leu; beta, -(His)-(Asp)-(Ala)-Ser. Their amino acid composition was too different to be compatible with our original concept of one chain being produced from the other by proteolytic shortening. Limited proteolysis by Staphylococcus aureus V8 proteinase yielded peptides partly identical size and partly quite different. In all properties investigated, the low-molecular-mass enzyme largely resembled yeast pyruvate decarboxylase; the holoenzyme appeared to possess (alpha beta)2 structure, the apoenzyme alpha beta. SH reagents inactivated the enzyme. Binding and fluorescence of 2-p-toluidinonaphthalene-6-sulfonate indicated a similar lipophilicity of the active site as found earlier for the yeast enzyme. 2-Hydroxy-5-nitrobenzyl modification of exposed tryptophan residues left the holoenzyme intact, but in the apoenzyme it destroyed most of the cofactor-binding ability and hence the activity. The strength of cofactor binding and the maximal specific activity were found somewhat lower than in yeast pyruvate decarboxylase.  相似文献   

9.
A phosphoprotein phosphatase active towards casein, phosphorylase a and mRNP proteins has been detected in the cytosol of cryptobiotic gastrulae of Artemia sp. This phosphatase has a relative molecular mass (Mr) of 225,000 as measured by gel filtration on Sephadex G-200 and has been purified to near homogeneity by ion-exchange chromatography on different DEAE-substituted matrices, affinity chromatography on polylysine-agarose, histone-Sepharose 4B and protamine-agarose, hydrophobic chromatography on phenyl-Sepharose 4B and gel filtration on Sephadex G-200. Sodium dodecyl sulphate gel electrophoresis of the final purification step revealed that the enzyme contains two types of subunits, alpha and beta, with Mr of 40,000 and 75,000, respectively. These values, in conjunction with the native Mr and the molar ratios of the subunits estimated by densitometric analysis of the gel, suggested that the subunit composition of the enzyme is alpha 2 beta 2. When treated with 1.7% (v/v) 2-mercaptoethanol at -20 degrees C or with ethanol, the enzyme released the catalytic alpha subunit of Mr 40,000. The protein phosphatase was activated by basic proteins e.g. protamine (A 0.5 = 1 microM), histone H1 (A 0.5 = 1.6 microM) and polylysine (A 0.5 = 0.2 microM) and inhibited by ATP (I 0.5 = 12 microM), NaF (I 0.5 = 3.1 mM) and pyrophosphate (I 0.5 = 0.6 mM). The enzyme is a polycation-stimulated protein phosphatase. Purified mRNP proteins, phosphorylated by the mRNP-associated casein kinase type II, are among the substrates used by the enzyme. The function of reversible phosphorylation-dephosphorylation of mRNP as a regulatory mechanism in mRNP metabolism is discussed.  相似文献   

10.
Procedures are described for separation of the alpha, beta 1, and beta 2 subunits of the voltage-sensitive sodium channel from rat brain by gel filtration in sodium dodecyl sulfate (SDS) before and after reduction of intersubunit disulfide bonds or by preparative SDS-gel electrophoresis. Partial proteolytic maps of the SDS-denatured subunits indicate that they are nonidentical polypeptides. They are all heavily glycosylated and contain complex carbohydrate chains that bind wheat germ agglutinin. The apparent molecular weights of the separated subunits were estimated by gradient SDS-gel electrophoresis, by Ferguson analysis of migration in SDS gels of fixed acrylamide concentration, or by gel filtration in SDS or guanidine hydrochloride. For the alpha subunit, SDS-gel electrophoresis under various conditions gives an average Mr of 260,000. Gel filtration methods give anomalously low values. Removal of carbohydrate by sequential treatment with neuraminidase and endoglycosidase F results in a sharp protein band with apparent Mr = 220,000, suggesting that 15% of the mass of the native alpha subunit is carbohydrate. Electrophoretic and gel filtration methods yield consistent molecular weight estimates for the beta subunits. The average values are: beta 1, Mr = 36,000, and beta 2, Mr = 33,000. Deglycosylation by treatment with endoglycosidase F, trifluoromethanesulfonic acid, or HF yields sharp protein bands with apparent Mr = 23,000 and 21,000 for the beta 1 and beta 2 subunits, respectively, suggesting that 36% of the mass of the native beta 1 and beta 2 subunits is carbohydrate.  相似文献   

11.
Chloroplastic phenylalanyl-tRNA synthetase from bean leaves is purified under optimal protective conditions over 4,900-fold. Its apparent molecular weight is 78,000, as determined by gel filtration, with a dimeric subunit structure of alpha beta (alpha = 33,000 and beta = 42,000), as determined by sodium dodecyl sulfate gel electrophoresis. This indicates a drastic size reduction of 40% for each subunit compared to the corresponding cytoplasmic enzyme and a unique quaternary structure. Heterologous aminoacylation and substrate properties of ATP analogs indicate substantial differences in the topographies of the substrate binding domains of these two heterotopic intracellular plant enzymes. No common antigenic determinants with the bean cytoplasmic enzyme were detected by polyclonal antibodies against the chloroplastic enzyme. The same negative result applies to the immunological comparison with the partially purified enzymes from the cyanobacterium Anacystis nidulans and the photosynthetic green sulfur bacterium Chlorobium limicola that both have a molecular weight of 260,000.  相似文献   

12.
A soluble alpha(1-3)-L-fucosyltransferase, which accepts carbohydrates of the general structure NeuAc alpha(2-3)Gal beta(1-4)GlcNAc beta-R as substrates and which is involved in the biosynthesis of the tumor-associated sialyl-LeX determinant, was purified about 125-fold from human amniotic fluid by a one-step affinity chromatography on fetuin-agarose. Upon SDS gel electrophoresis, the purified enzyme revealed a protein band with a relative molecular mass (Mr) of about 62,000. The enzyme acted equally well on sialoglycoproteins and their desialylated derivatives.  相似文献   

13.
GTP:mRNA guanylyltransferase, an enzyme that catalyzes the transfer of the GMP moiety from GTP to the 5' end of the RNA to form a cap structure (G(5')pppN-), has been purified to an apparent homogeneity from Saccharomyces cerevisiae. The mRNA 5'-triphosphatase activity hydrolyzing the gamma-phosphoryl group from pppN-RNA was co-purified with mRNA guanylyltransferase activity through column chromatographies on CM-Sephadex and poly(U)-Sepharose, and centrifugation through glycerol gradients, suggesting that these two activities are physically associated. An 820,w value of 7.3, and Mr = 140,000 were estimated from the sedimentation behavior in glycerol gradients. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two major polypeptides, Mr = 45,000 (alpha) and 39,000 (beta), were detected with the purified enzyme preparation. Their molar ratios were close to unity when estimated by the relative density of silver staining. These results suggest that the yeast mRNA-capping enzyme is an oligomeric protein which may consist of two alpha and two beta chains (alpha 2 beta 2).  相似文献   

14.
Monomeric [14C] methyl avidin was shown to bind to sodium dodecyl sulfate-denatured biotinyl proteins and remain bound through polyacrylamide gel electrophoresis which allowed their detection by fluorography. This method was used to show that purified rat liver acetyl CoA carboxylase contained two high molecular weight forms of the enzyme (MR = 241,000 and 252,000) while rapidly prepared, crude rat liver cytoplasm contained two larger molecular weight (MR = 257,000 and 270,000) forms. Thus, the enzyme had undergone substantial proteolysis during purification. The crude enzyme preparation also contained a smaller biotinyl protein (MR = 141,000) which is likely a proteolytic product of the larger forms of acetyl CoA carboxylase.  相似文献   

15.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

16.
Two forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase have been isolated from wheat seedlings. One of these enzymes, termed PFP-1, has been purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of two different polypeptide chains of Mr = 67,000 (alpha) and 60,000 (beta). PFP-1 has been assigned a molecular structure consisting of alpha 2 beta 2 based on an estimated Mr of 234,000 for the native enzyme. PFP-2, the other form of phosphotransferase, has also been purified extensively. Preliminary data suggest that the active form of PFP-2 is probably a dimer of a polypeptide chain of Mr = 60,000. Immunological studies indicate that the two enzyme preparations share common antigenic determinants. The two forms of enzyme have very similar kinetic properties. The phosphotransferases are activated by fructose 2,6-bisphosphate (Fru-2,6-P2) which lowers the Km of the enzymes for fructose 6-phosphate but not that for PPi. Interestingly, PFP-1 is significantly more active than PFP-2 in the absence of Fru-2,6-P2. Also, PFP-1 exhibits a greater affinity (Ka = 7 nM) than PFP-2 (Ka = 26 nM) for the activator. Based on kinetic, immunological, and physicochemical parameters, it is suggested that the two enzymic forms are related in that they share the same catalytic moiety, i.e. the 60,000-dalton or beta subunit. The beta subunit when in complex formation with the alpha subunit, as in PFP-1, becomes more active in the absence of Fru-2,6-P2 as well as exhibits a greater sensitivity toward the effector.  相似文献   

17.
Purified nuclease TT1 from Thermus thermophilus HB8 has multimolecular weight forms, each of which is composed of three different subunits, alpha (10.8 x 10(4)), beta (7.8 x 10(4)), and gamma (4.1 x 10(4)). The molecular weights of this enzyme were estimated by gel filtration, polyacrylamide gel electrophoresis and equilibrium sedimentation. It was found that most of the enzyme has a molecular weight of about 22 x 10(4) being a monomer having the subunit composition of alpha beta gamma. The remaining part of the enzyme has larger molecular weights and is considered to be size-isomers of alpha beta gamma. The alpha-helical content, 5.5--6.5%, and the beta-structure, about 28%, were estimated from the CD spectrum at 4 degrees C.  相似文献   

18.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

19.
Specific antisera to purified DNA polymerase alpha from embryos of Drosophila melanogaster and to two of the four constituent subunits (alpha, beta, gamma, and delta) were prepared. These antibodies have revealed the following features of the enzyme. (i) The Mr = 148,000 alpha subunit is very likely derived by in vitro proteolysis from polypeptides with molecular weights of 185,000 and 166,000 that are present in vivo. (ii) The Mr = 60,000 beta subunit occurs in rapidly replicating embryos as both an 85,000- and a 60,000-dalton form, but predominantly as a 60,000-dalton form in more slowly replicating cultured cells. (iii) There is no detectable immunologic cross-reactivity between the four subunits. (iv) There is an abundance of antigenic material in embryos that co-migrates with the delta subunit of the purified enzyme during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

20.
The molecular weight of pyruvate carboxylase isolated from pigeon and rat liver mitochondria was examined using analytical ultracentrifugation and electron microscopy. The enzyme molecule appeared as a tetramer with the four subunits arranged at the corners of a square. Sedimentation studies in the analytical ultracentrifuge, extrapolated to infinite dilution, showed the tetramer to have a molecular weight Mc=0r of 280 000 and an So20,w of 12.7 S. The tetramer could be dissociated into trimers and dimers of lower specific enzymic activity by storage at 4 degrees C or incubation at -- 20 degrees C at low protein concentrations. The isolated trimers and dimers had a molecular weight Mc=0r of 210 000 and 140 000, respectively, and an So20,w of 10.85 S and 7.55 S, respectively. Incubation with 2 M urea at 20 degrees C yielded enzymically inactive subunits (Mc=0r = 70 000; So20,w = 4.95 S). The molecular weights (for pyruvate carboxylase and its subunits), as calculated from the subunit diameter observed in the electron microscope, were consistent with the values obtained from sedimentation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号