首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The extracellular zona pellucida surrounds mammalian eggs and mediates taxon-specific sperm-egg recognition at fertilization. In mice, the zona pellucida is composed of three glycoproteins, but the presence of ZP2 and ZP3 is sufficient to form a biologically functional structure. Each zona pellucida glycoprotein is synthesized in growing oocytes and traffics through the endomembrane system to the cell surface, where it is released from a transmembrane domain and assembled into the insoluble zona pellucida matrix. ZP2 and ZP3 colocalize in the endoplasmic reticulum and in 1- to 5-microm post-Golgi structures comprising multivesicular aggregates (MVA), but a coimmunoprecipitation assay does not detect physical interactions. In addition, ZP2 traffics normally in growing oocytes in the absence of ZP3 or if ZP3 has been mutated to prevent incorporation into the zona pellucida matrix, complementing earlier studies indicating the independence of ZP3 secretion in Zp2 null mice. N glycosylation has been implicated in correct protein folding and intracellular trafficking of secreted proteins. Although ZP3 contain five N-glycans, enhanced green fluorescent protein-tagged ZP3 lacking N glycosylation sites is present in MVA and is incorporated into the zona pellucida matrix of transgenic mice. Thus, ZP2 secretion is seemingly unaffected by ZP3 lacking N-glycans. Taken together, these observations indicate that ZP2 and ZP3 traffic independently through the oocyte prior to assembly into the zona pellucida.  相似文献   

3.
Evidence from several cell types indicates that chromatin can induce microtubule assembly in its vicinity. To determine whether this activity is present in sperm chromatin, whose biochemical composition differs from somatic chromatin, mouse oocytes that were undergoing meiotic maturation were inseminated. Maturing oocytes are not activated by sperm penetration but remain arrested at metaphase. The sperm chromatin within the oocyte cytoplasm initially became dispersed and later, under the influence of oocyte cytoplasmic factors, recondensed into a small mass of individual chromosomes. When inseminated oocytes were processed for immunofluorescence using an anti--tubulin antibody, microtubules were never associated with dispersed sperm chromatin, although the chromosomes of the oocyte were arranged on a spindle. In contrast, microtubules were associated with the majority of sperm nuclei that had become recondensed, and were frequently arranged into a spindle-like structure. When oocytes had been penetrated by more than three sperm, most sperm nuclei remained at the dispersed chromatin stage and these were never associated with microtubules. Exposure of polyspermic oocytes to taxol, which promotes microtubule assembly, failed to induce microtubule assembly around dispersed sperm chromatin. Exposure of monospermic oocytes to nocodazole, which inhibits tubulin polymerization, prevented resolution of the recondensed sperm chromatin into individual chromosomes. These results suggest that sperm chromatin lacks an activity that can induce local microtubule assembly, and that it acquires this activity once modified by oocyte cytoplasmic factors.  相似文献   

4.
In vivo N-glycosylation and fate of Asn-X-Ser/Thr tripeptides   总被引:4,自引:0,他引:4  
The minimum primary structural requirement for a tripeptide to serve as a substrate for oligosaccharyl transferase is the sequence -Asn-X-Ser/Thr-. In the present study the activities of three structurally different tripeptides containing acceptor sequences for oligosaccharyl transferase were compared in three systems: Xenopus oocytes, in which they were introduced into the cytoplasm by microinjection, cultured mammalian cells, and isolated rat liver microsomes. In the last two systems, the peptides were added exogenously to the culture or to the incubation medium, respectively. On the basis of lectin column and paper chromatographic analysis it was established that the microinjected acceptor tripeptides were glycosylated in Xenopus oocytes. However, lectin column analysis and retention of sensitivity to endoglycosidase H revealed that none of the three glycopeptides was processed to complex oligosaccharide chains and none was subsequently secreted. Rather, over a 24-h period the glycopeptides were degraded. Chloroquine was found to block this degradation process, but even under these conditions, the glycopeptides were not secreted into the medium. In the isolated microsomes the glycosylation of the acceptor tripeptides was time-dependent and the tripeptide with an iodotyrosine residue in the X position was found to be a poor substrate. When added to cultured mammalian cells, all three of the tripeptides were taken up, glycosylated, and subsequently secreted. These results are discussed in the context of the wide differences in glycosylation of the three peptides and their lack of secretion after glycosylation in Xenopus oocytes.  相似文献   

5.
The zona pellucida (ZP) is a highly organized extracellular coat that surrounds all mammalian eggs. The mouse egg ZP is composed of three glycoproteins, called mZP1-3, that are synthesized, secreted, and assembled into a ZP exclusively by growing oocytes. Here, we microinjected epitope-tagged (Myc and Flag) cDNAs for mZP2 and mZP3 into the germinal vesicle (nucleus) of growing oocytes isolated from juvenile mice. Specific antibodies and laser scanning confocal microscopy were used to follow nascent, recombinant ZP glycoproteins in both permeabilized and nonpermeabilized oocytes. When such cDNAs were injected, epitope-tagged mZP2 (Myc-mZP2) and mZP3 (Flag-mZP3) were synthesized, packaged into large intracellular vesicles, and secreted by the vast majority of oocytes. Secreted glycoproteins were incorporated into only the innermost layer of the thickening ZP, and the amount of nascent glycoprotein in this region increased with increasing time of oocyte culture. Consistent with prior observations, the putative transmembrane domain at the C terminus of mZP2 and mZP3 was missing from nascent glycoprotein incorporated into the ZP. When the consensus furin cleavage site near the C terminus of mZP3 was mutated, such that it should not be cleaved by furin, secretion and assembly of mZP3 was reduced. On the other hand, mZP3 incorporated into the ZP lacked the transmembrane domain downstream of the mutated furin cleavage site, suggesting that some other protease(s) excised the domain. These results strongly suggest that nascent mZP2 and mZP3 are incorporated into only the innermost layer of the ZP and that excision of the C-terminal region of the glycoproteins is required for assembly into the oocyte ZP.  相似文献   

6.
Polyadenylated mRNA isolated from MOPC-46B plasmacytoma, which secretes a glycosylated kappa chain, was injected into Xenopus laevis oocytes. Analysis of the resulting product showed that [1-14C]mannose was incorporated into the MOPC-46B kappa chain. Light chains synthesized in oocytes injected with mRNA from MOPC-321 plasmacytoma, which secretes a nonglycosylated kappa chain, failed to incorporate label from [1-14C]mannose. Thus, protein glycosylation in the oocyte is apparently specific in that carbohydrate is incorporated only into the kappa chain synthesized as a glycoprotein by myeloma cells. It is thus evident that the general signals for glycosylation have remained stable during independent evolution of the amphibia and mammalia.  相似文献   

7.
The rat core-specific lectin (CSL) or mannan-binding protein is synthesized and secreted by rat hepatocytes and H-4-II-E hepatoma cells. Prior to secretion proline and lysine residues with collagen-like sequences undergo hydroxylation and subsequent glycosylation of hydroxylysine to produce glucosylgalactosylhydroxylysine. Hydroxylation and subsequent glycosylation are inhibited by alpha,alpha'-dipyridyl (Colley, K. J., and Baenziger, U. U. (1987) J. Biol. Chem. 262, 10290-10295). We have used alpha,alpha'-dipyridyl to investigate the role of hydroxylation and glycosylation on interchain disulfide bond formation, assembly of subunits into high molecular weight complexes, attainment of carbohydrate and lipid binding ability, and secretion. Formation of disulfide-bonded dimers and trimers in the endoplasmic reticulum, assembly into high molecular weight complexes in the Golgi, and attainment of carbohydrate binding activity occur in either the presence or absence of these post-translational modifications. The mature fully processed form of the CSL binds hydrophobic matrices and is secreted at a slow, but linear, rate. Inhibition of proline and lysine hydroxylation and hydroxylysine glycosylation prevents CSL secretion and attainment of binding activity for hydrophobic matrices. Secretion of the lectin, although slow, appears to be an active process and may be related to the capacity to interact with membranes and/or lipids. Other proteins known to contain collagen-like sequences such as acetylcholinesterase, pulmonary surfactant apoproteins, and C1q also interact with lipids and/or membranes. The collagen-like domains of these proteins may also play a role in promoting such interactions.  相似文献   

8.
Immunoglobulin M (IgM)-secreting murine plasmablasts have been used to explore the cytologic site(s) of the successive modifications of the polypeptide H and L chains (steps of glycosylation, chain assembly, and polymerization) which occur during intracellular transport (ICT) and the interrelationships between these events. A combination of pulse- chase biosynthetic labeling protocols (using amino acids and sugars), subcellular fractionation, and electron microscope autoradiography was used in conjunction with inhibitors of glycosylation and agents (carboxyl cyanide m-chlorophenyl hydrazone [CCCP] and monensin) which block Ig exit from the rough endoplasmic reticulum (RER) or Golgi cisternae. The data are consistent with the following conclusions: (1) Sugar addition and modification occur in three main steps: (a) en bloc addition of core sugars to nascent H chains, (b) partial trimming of these oligosaccharide chains in the RER, (c) quasiconcerted addition of terminal sugars (galactose, fucose, and sialic acid) in a very distal compartment between monensin-sensitive Golgi cisternae and the cell surface. (2) H and L chain assembly occurs between nascent H chains and a pool of free light chains present in the RER, followed by interchain disulfide bonding and rapid assembly of monomers into J chain- containing pentamers in the RER. Small amounts of various apparently non-obligatory intermediates in polymerization are also formed. (3) Carbohydrate addition is not required for chain assembly, polymerization, and secretion since completely unglycosylated chains (synthesized in the presence of deoxyglucose or tunicamycin) undergo polymerization and are secreted (although at a reduced rate). (4) Surface 8s IgM molecules do not represent a step in the IgM secretory pathway.  相似文献   

9.
The structural and molecular determinants that govern the correct membrane insertion and folding of membrane proteins are still ill-defined. By following the addition of sugar chains to engineered glycosylation sites (glycosylation mapping) in Na,K-ATPase beta isoforms expressed in vitro and in Xenopus oocytes, in combination with biochemical techniques, we have defined the C-terminal end of the transmembrane domain of these type II proteins. N-terminal truncation and the removal of a single charged residue at the N-terminal start of the putative transmembrane domain influence the proper positioning of the transmembrane domain in the membrane as reflected by a repositioning of the transmembrane domain, the exposure of a putative cryptic signal peptidase cleavage site, and the production of protein species unable to insert into the membrane. Glycosylation mapping in vivo revealed that the degree of glycosylation at acceptor sites located close to the membrane increases with the time proteins spend in the endoplasmic reticulum. Furthermore, core sugars added to such acceptor sites cannot be processed to fully glycosylated species even when the protein is transported to the cell surface. Thus, the glycosylation mapping strategy applied in intact cells is a useful tool for the study of determinants for the correct membrane insertion of type II and probably other membrane proteins, as well as for the processing of sugar chains in glycoproteins.  相似文献   

10.
Aneuploidy is caused by incorrect chromosome segregation and can result in cancer or birth defects. The spindle assembly checkpoint (SAC) guarantees proper cell cycle progression. Highly Expressed in Cancer protein 1 (Hec1, also called Ndc80) is the core component of the Ndc80 complex and is involved in regulating both kinetochore-microtubule interactions and the SAC during mitosis in multiple cell types. However, its involvement in pig oocyte meiotic maturation remains uncertain. Thus, we investigated Hec1 expression, localization, and possible functions during porcine oocyte meiosis. Immunofluorescent staining showed that Hec1 was expressed in porcine oocytes and was associated with centromeres at both the metaphase I and metaphase II stages. Disrupting Hec1 function with its inhibitor INH1 resulted in polar body extrusion defects in porcine oocytes. Moreover, inhibiting Hec1 activity also resulted in severe chromosome misalignments and aberrant spindle morphology. Our results showed a unique localization pattern for Hec1 in porcine oocytes and suggested that Hec1 was required for chromosome alignment and spindle organization. Thus, Hec1 might regulate spindle checkpoint activity during mammalian oocyte meiosis.  相似文献   

11.
Several discrete events were resolved in the processing of vitellogenin in Blattella germanica. Using tunicamycin to inhibit the synthesis of high-mannose oligosaccharide, a high molecular weight pro-vitellogenin peptide (apo-proVG, Mr 215,000) was identified in fat body. Dosages of tunicamycin which inhibited glycosylation of vitellogenin by 98% inhibited its synthesis by as much as 59%, yet led to an intracellular accumulation of apo-proVG. Reversibility and dose dependency of these effects on vitellogenin synthesis, glycosylation, proteolytic processing, and secretion were demonstrated. In control insects, glycosylation of apo-proVG yielded a Mr 240,000 pro-vitellogenin peptide (proVG). FITC-Concanavalin A bound to purified proVG but not to apo-proVG, thus confirming an absence of high-mannose oligosaccharide in the apo-protein. Following its glycosylation, proVG was processed rapidly in fat body to Mr 160,000 (VG160) and Mr 102,000 (VG102) peptides which subsequently were secreted into hemolymph. After uptake into developing oocytes, the VG160 peptide was processed further prior to chorionation, yielding subunits of Mr 95,000 and 50,000. Uniqueness of the peptides of mature vitellin (Mr 102,000, 95,000, and 50,000) was indicated by comparison of the CNBr fragments of each purified subunit. Staining of CNBr fragments with FITC-Concanavalin A also indicated that high-mannose oligosaccharides are attached at one or more sites within each vitellin subunit. Resolution of the substructure of this insect vitellin and identification of events involved in the processing and secretion of its fat body apo-protein provide a basis for further study of the assembly and transport of vitellogenin, its packaging in eggs, and utilization during embryogenesis.  相似文献   

12.
The minimal functional Na,K-ATPase unit is composed of a catalytic alpha-subunit and a glycosylated beta-subunit. So far three putative beta-isoforms have been described, but only beta 1-isoforms have been identified clearly as part of a purified active enzyme complex. In this study we provide evidence that a putative beta 3-isoform might be the functional component of Xenopus oocyte Na,K-ATPase. beta 3-isoforms are expressed in the oocyte plasma membrane together with alpha-subunits, but beta 3-isoforms are synthesized to a lesser extent than alpha-subunits. The unassembled oocyte alpha-subunits accumulate in an immature trypsin-sensitive form most likely in the endoplasmic reticulum (ER). Injection of both beta 1- and beta 3-cRNA into oocytes abolishes the transport constraint of the oocyte alpha-subunit, renders it trypsin-resistant, and finally leads to an increased number of functional pumps at the plasma membrane. In addition, beta 3-isoforms as beta 1-isoforms depend on the concomitant synthesis of alpha-subunits to be able to leave the ER and to become fully glycosylated. Finally, alpha-beta 1 and alpha-beta 3 complexes expressed at the plasma membrane appear to have similar transport properties as assessed by ouabain binding, rubidium uptake, and electrophysiological measurements in oocytes coexpressing exogenous alpha 1- and beta 1- or beta 3-isoforms. Thus our data indicate that beta 3-isoforms have functional qualities similar to beta 1-isoforms. They can assemble and impose a structural reorganization to newly synthesized alpha-subunits which permits the exit from the ER and the expression of functional Na,K-pumps at the plasma membrane.  相似文献   

13.
Microtubule assembly in surf clam oocytes is dependent upon events that occur during fertilization. Prior to fertilization there are few, if any microtubules, but within minutes after fertilization microtubules assemble to form the meiotic apparatus. This study demonstrates that the assembly of microtubules after fertilization may be dependent on the fertilization-induced pH change of the cytoplasm. Since the magnitude of the intracellular pH (pHi) change in Spisula oocytes has not been determined, surf clam microtubule assembly was examined at pH values that reflect the pHi change that occurs during sea urchin fertilization. The results indicate that microtubule assembly in crude oocyte extracts is favored at alkaline pH. In contrast, purified surf clam tubulin assembles to a greater extent at pH 6.6 than at pH 7.2. These results reveal that the tubulin in unfertilized oocytes can assemble into microtubules at pH 6.6 but that they are prevented from doing so by pH-dependent cytoplasmic regulatory factors in the oocyte.  相似文献   

14.
Very low density lipoprotein (VLDL) is the major vehicle in the plasma which carries triacylglycerol synthesized in the liver to peripheral tissues for utilization. Estrogen-induced chick parenchymal liver cells (hepatocytes) synthesize and secrete large amounts of VLDL. These cells, in a primary monolayer culture system developed in this laboratory, have been employed to study the operative and regulatory aspects of VLDL synthesis, assembly, and secretion. Some 10 min are required for the translation of the principle VLDL protein constituent, apolipoprotein B, and 30–35 min are required for the two newly translated chick VLDL apolipoproteins, apolipoprotein B and apolipoprotein II, to be secreted. Apolipoprotein B is synthesized on membrane-bound polysomes as a contiguous polypeptide chain of 350K molecular weight (MW) and is not assembled posttranslationally from smaller-peptide precursors. Translocation of puromycin-discharged apolipoprotein B nascent chains into the endoplasmic reticulum lumen and their subsequent secretion are independent of both ongoing protein synthesis and the attachment of the nascent peptides to ribosomes. Apolipoprotein B nascent chains discharged by puromycin assemble with glycerolipid (mainly triacylglycerol) and are secreted as immunoprecipitable VLDL. Core oligosaccharides are added to the apolipoprotein B nascent chain co-translationally in at least two stages, at molecular weights of ~ 120K and ~ 280K. Inhibition of N-linked glycosylation of apolipoprotein B with tunicamycin affects neither the assembly of glycerolipids into VLDL nor the secretion of the VLDL particle, indicating that aglyco-apolipoprotein B can serve as a functional component for VLDL assembly and secretion. Active synthesis of the VLDL apolipoproteins is required, however, for glycerolipid assembly into VLDL and secretion from the hepatocyte. The differential kinetics with which newly synthesized apolipoproteins and glycerolipids are secreted as VLDL and the timing of the effects of protein-synthesis inhibitors on their secretion indicate that VLDL constituents are assembled sequentially in the intact liver cell. The bulk of the VLDL triacylglycerol and some VLDL phosphoglyceride is introduced early in the secretory pathway proximal, yet subsequent to apopeptide synthesis, while a significant fraction of VLDL phosphoglyceride associates with the resulting triacylglycerol-rich lipid-protein complexes just prior to their secretion as mature VLDL. Within the context of current models for VLDL structure, the late assembly of phosphoglyceride into VLDL is taken to represent a surface maturation of the nascent VLDL particle.  相似文献   

15.
Prostatic binding protein (PBP) is a quantitatively important steroid-binding protein present in rat ventral prostate. Electrophoresis on SDS-containing polyacrylamide gels shows that PBP is composed of two subunits, F and S having molecular weights of 16,000 and 18,000. Upon reduction these subunits dissociate further into smaller components. Translation of mRNA from rat ventral prostate in a wheat germ cell-free system or in Xenopus oocytes results in the formation of polypeptides immunoprecipitable with an anti-PBP antiserum. However, as opposed to the wheat germ system, only the oocytes synthesize polypeptides, that are electrophoretically identical to those of native cytosolic PBP.  相似文献   

16.
The glycoprotein hormone erythropoietin (Ep), the primary regulator of erythropoiesis, is synthesized by the kidney and secreted as the mature protein with three N-linked and one O-linked oligosaccharide chains. To investigate the role(s) of each carbohydrate moiety in the biosynthesis and function of Ep, we have used oligonucleotide-directed mutagenesis of a cDNA for human Ep to alter the amino acids at each of the carbohydrate attachment sites. Each mutated cDNA construct was expressed in stably transfected sublines of a kidney cell line, baby hamster kidney. We show, by preventing attachment of N-linked carbohydrate at asparagines 38 or 83, or preventing O-linked glycosylation at serine 126, that glycosylation of each of these specific sites is critical for proper biosynthesis and secretion of Ep. Fractionation of cellular extracts demonstrated that the mutant proteins lacking glycosylation at each of these three sites, (38, 83, and 126) were associated mainly with membrane components or were degraded rapidly. Less than 10% of these three mutant proteins were processed properly and secreted from the cells. The Ep protein lacking N-linked glycosylation at asparagine 24 is synthesized and secreted as efficiently as native Ep. The carbohydrates at positions 24 and 38 may be involved in the biological activity of Ep, since the absence of either of the oligosaccharide side chains at these positions reduced the hormone's biological activity.  相似文献   

17.
Recently, we provided evidence that the glycosylation of hamster oviductin, a member of the mucin family of glycoproteins, is regulated during the estrous cycle. In order to further elucidate the glycosylation process of oviductal glycoproteins, we identified biosynthetic pathways involved in the assembly of mucin-type O-linked oligosaccharide (O-glycan) chains in the hamster oviduct. Our results demonstrated that the hamster oviduct has high activities of glycosyltransferases that synthesize O-glycans with core 1, 2, 3 and 4 structures as well as elongated structures. Oviduct therefore represents a typical mucin-secreting tissue. Our results also showed that specific glycosyltransferase activities are regulated during the estrous cycle. Mucin-type core 2 beta6-GlcNAc-transferase (C2GnT2) is responsible for synthesizing core 2 and core 4 structures in the oviduct. Specific assays for C2GnT2 revealed a cyclical pattern throughout the estrous cycle with high activity at the stages of proestrus and estrus and low activity at diestrus 1. Using semiquantitative RT-PCR, the mRNA levels for C2GnT2 in the estrous cycle stages could be correlated with the enzyme activities. An increase in glycosyltransferase activity in the hamster oviduct at the time of ovulation suggests that glycosylation of oviductal glycoproteins may be necessary for these proteins to exert their functions during the process of fertilization.  相似文献   

18.
S Zhou  S Q Yang    D N Standring 《Journal of virology》1992,66(5):3086-3092
Little is known about the assembly of the 28-nm nucleocapsid or core particle of hepatitis B virus. Here we show that this assembly process can be reconstituted in Xenopus oocytes injected with a synthetic mRNA encoding the hepatitis B virus capsid protein (p21.5). Injected oocytes produce both a nonparticulate p21.5 species (free p21.5) and capsid particles. We describe rapid and simple methods for fractionating these species on a small scale either with step gradients of 10 to 60% (wt/vol) sucrose or by centrifugation to pellet the particles, and we characterize the oocyte core particles. Free p21.5 exhibits chemical and physical properties distinctly different from those of particles. Free p21.5 is partially cleaved by proteinase K, whereas core particles are almost completely resistant to cleavage. This suggests that the carboxyl-terminal protamine region, the main target for proteases within p21.5, is exposed in free p21.5 but faces the interior of the p21.5 core particle. Finally, pulse-chase experiments demonstrated that free p21.5 can be chased almost quantitatively into core particles, establishing that free p21.5 is fully competent to form particles and represents an assembly intermediate on the pathway for core particle formation. However, core particle assembly appears very dependent on p21.5 concentration and is rapidly compromised if the p21.5 concentration is lowered. The advantages of oocytes for studying assembly are discussed.  相似文献   

19.
Neuroglycan C (NGC) is a membrane-spanning chondroitin sulfate (CS) proteoglycan that is expressed predominantly in the central nervous system (CNS). NGC dramatically changed its structure from a proteoglycan to a nonproteoglycan form with cerebellar development, whereas a small portion of NGC molecules existed in a nonproteoglycan form in the other areas of the mature CNS, suggesting that the CS glycosylation of NGC is developmentally regulated in the whole CNS. As primary cultured neurons and astrocytes from cerebral cortices expressed NGC in a proteoglycan form and in a nonproteoglycan form, respectively, CS glycosylation seems to be regulated differently depending on cell type. To investigate the glycosylation process, cell lines expressing a proteoglycan form of NGC would be favorable experimental models. When a mouse NGC cDNA was transfected into COS 1, PC12D, and Neuro 2a cells, only Neuro 2a cells, a mouse neuroblastoma cell line, expressed NGC bearing CS chains. In PC12D cells, although three intrinsic CS proteoglycans were detected, exogenously expressed NGC did not bear any short CS chains just like NGC in the mature cerebellum. This suggests that the addition of CS chains to the NGC core protein is regulated in a manner different from that of other CS proteoglycans. As the first step in investigating the CS glycosylation mechanism using Neuro 2a cells, we determined the CS attachment site as Ser-123 on the NGC core protein by site-directed mutagenesis. The CS glycosylation was not necessary for intracellular trafficking of NGC to the cell surface at least in Neuro 2a cells.  相似文献   

20.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号