首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermostability of Flavobacterium meningosepticum glycerol kinase was increased by the change from Ser329 to Asp [Protein Eng., 14, 663-667 (2001)]. Based on a three-dimensional structure model of the mutant, we have postulated that a new charged-neutral hydrogen bond was formed between Asp329 and Ser414, and the formation of the hydrogen bond contributed to the stabilization of the tertiary structure and increased thermostability of the mutant enzyme. If the postulation is the case, FGK thermostabilization would be possible similarly by the single amino acid substitution from Ser414 to another amino acid which could form the hydrogen bond with Ser329. We did a single amino acid substitution of the wild-type enzyme from Ser414 to Asn. As we expected, S414N showed comparable thermostability to that of S329D. On the other hand, a difference in kinetic properties for ATP between S414N and S329D was observed.  相似文献   

2.
Four oligosaccharide chain-cleaving enzymes, including two new endoglycosidases distinct from endo-beta-acetylglucosaminidase (Endo) F1, have been identified and purified to homogeneity from cultural filtrates of Flavobacterium meningosepticum. FPLC-directed hydrophobic-interaction chromatography in conjunction with high-resolution ion-exchange chromatography provided a more simple, rapid method for the isolation of endoglycosidase F1, F2 and F3, and the amidase, peptide-N4-N-acetyl-beta-D-glucosaminyl)-asparagine amidase (PNGase F), in greater than 50% yield. The specificity of PNGase F and Endo F1 are well established. Endo F2 and Endo F3 represent new distinct endoglycosidases that prefer complex as compared to high-mannose asparagine-linked glycans. Endo F2 cleaved biantennary oligosaccharides, whereas Endo F3 cleaved both bi- and triantennary oligosaccharides.  相似文献   

3.
The prolyl endopeptidase [EC 3.4.21.26] gene of Flavobacterium meningosepticum was cloned in Escherichia coli with the aid of an oligonucleotide probe which was prepared based on the amino acid sequence. The hybrid plasmid, pFPEP1, with a 3.5 kbp insert at the HincII site of pUC19 containing the enzyme gene, was subcloned into pUC19 to construct plasmid pFPEP3. The whole nucleotide sequence of an inserted HincII-BamHI fragment of plasmid pFPEP3 was determined by the dideoxy chain-terminating method. The purified prolyl endopeptidase was labeled with tritium DFP, and the sequence surrounding the reactive serine residue was found to be Ala (551)-Leu-Ser-Gly-Arg-*Ser-Asn(557). Ser-556 was identified as a reactive serine residue. The enzyme consists of 705 amino acid residues as deduced from the nucleotide sequence and has a molecular weight of 78,705, which coincides well with the value estimated by ultra centrifugal analysis. The amino acid sequence was 38.2% homologous to that of the porcine brain prolyl endopeptidase [Rennex et al. (1991) Biochemistry 30, 2195-2203] and 24.5% homologous to E. coli protease II, which has substrate specificity for basic amino acids [Kanatani et al. (1991) J. Biochem. 110, 315-320].  相似文献   

4.
Glycerol kinase (GK) catalyzes the Mg-ATP-dependent phosphorylation of glycerol which yields glycerol 3-phosphate. The 2.8 A new crystal structure of GK complexed with an ATP analog revealed an unexpected position of the gamma-phosphoryl group, which was 7.2 A distant from the 3-hydroxyl group of glycerol, 5.5 A away from the 3-phosphate of the product (glycerol 3-phosphate) and is stabilized by a beta-hairpin structure. Based on the presented crystal structure and the previously determined structures of GK product complexes, we propose a 3-D model of a nucleophilic in-line transfer mechanism for the ATP-dependent phosphorylation of glycerol by GK.  相似文献   

5.
A prolyl endopeptidase was purified from Flavobacterium meningosepticum. It was digested with trypsin. Two oligonucleotides, based on tryptic peptide sequences and used in PCR experiments, amplified a 300-base pair (bp) fragment. A 2.4-kilobase EcoRI fragment that hybridized to the 300-bp probe was cloned in lambda ZAP and sequenced from both strands. It contains a reading frame of 2115 bp, encoding the complete protein sequence of 705 amino acids. Ion-spray mass spectrometry experiments demonstrated the presence of an NH2-terminal signal peptide: the periplasmic mature protease is 685 residues in length for a molecular mass of 76784 Da. The prolyl endopeptidase showed no general sequence homology with known protein sequences except with that of porcine brain prolyl endopeptidase. In order to identify the active-site serine, the prolyl endopeptidase was labeled with [3H]diisopropyl fluorophosphate. One labeled peptide was purified and sequenced. The active-site serine was located in position 536 within the sequence GRSNGG. This sequence is different from the active-site sequence of the trypsin (GDSGGP) and subtilisin (GTSMAS) families.  相似文献   

6.
The alpha subunit of the rat brain sodium channel is phosphorylated by cAMP-dependent protein kinase in vitro and in situ at multiple sites which yield seven tryptic phosphopeptides. Phosphopeptides 1-4 and 7 are derived from phosphorylation sites between residues 554 and 623 in a single large CNBr fragment from the cytoplasmic segment connecting homologous domains I and II of the alpha subunit (Rossie, S., Gordon, D., and Catterall, W. A. (1987) J. Biol. Chem. 262, 17530-17535). In the present work, antibodies were prepared against a synthetic peptide corresponding to residues 676-692 (AbSP15), which contain one additional potential phosphorylation site at Ser686-Ser687 in a different predicted CNBr fragment of this same intracellular segment. AbSP15 recognizes native and denatured sodium channels specifically and immunoprecipitates phosphorylated CNBr fragments of low molecular mass that contain a new site phosphorylated by cAMP-dependent protein kinase. Comparison of tryptic phosphopeptides derived from intact alpha subunits with those derived from the phosphorylated CNBr fragments isolated by immunoprecipitation with AbSP15 indicates that the two previously unidentified phosphopeptides 5 and 6 derived from the intact alpha subunit arise from phosphorylation of the site containing Ser686-Ser687. These results identify a new cAMP-dependent phosphorylation site and show that the major cAMP-dependent phosphorylation sites of the rat brain sodium channel, which are phosphorylated both in vitro and in intact neurons, are all located in a cluster between residues 554 and 687 in the intracellular segment between domains I and II.  相似文献   

7.
The crystallization of bovine glycerol kinase (ATP:glycerol 3-phosphotransferase EC 2.7.1.30) is reported along with a study on the unusual activation of this enzyme by ethanol. The enzyme was extracted from calf lever andusual activation of this enzyme by ethanol. The enzyme was extracted from calf liver and purified 5900-fold giving crystals with a 5% yield. The kinetics of the enzyme with regard to glycerol and ATP were studied by varying the concentration of one substrate while keeping the other at saturating levels, and the effect of ethanol was observed by adding it at levels of 5% (v/v). Ethanol increased the V in both cases almost 2-fold. The apparent Km of ATP was 3.5 - 10(-6) and was increased to 7.6 - 10(-6) in the presence of ethanol. The apparent Km for glycerol was 3 - 10(-5) and was increased to 12 - 10(-5) when ethanol was added. A number of other alcohols had a similar activating effect except for 1,2-diols which only inhibited the enzyme. These findings are consistent with the explanation that alcohols compete with glycerol (hence also with the glycerophosphate product) for a hydroxy binding site on the enzyme. This leads to more rapid dissociation of the glycerophosphate (i.e. an increase in the steady-state constant, "k+2" resulting in an increased V).  相似文献   

8.
Glycerol and dihydroxyacetone are metabolized by rabbit kidney-cortex tubules, isolated by collagenase treatment. Half-maximal concentrations of both substrates were determined with regard to uptake rates and product formations. Maximal uptake rates were 643 and 329 mumol/h per g of protein for dihydroxyacetone and glycerol respectively. Glucose and lactate were found as major metabolic products. Glycerol kinase, the enzyme catalysing the first step in renal glycerol and dihydroxyacetone metabolism, was measured radiochemically as described by Newsholme, Robinson & Taylor [(1967) Biochim, Biophys. Acta 132, 338-346] and adapted for studies of the localization of this enzyme along the different structures of rabbit nephron. The results show that glycerol kinase is located exclusively in the proximal segments, i.e. the proximal convoluted tubules and the pars recta, but is negligible in the other structures studied. The activities were close to the maximal dihydroxyacetone uptake rates measured in tubule suspensions.  相似文献   

9.
This paper compares wild-type and two mutant beta-actins, one in which Ser14 was replaced by a cysteine, and a second in which both Ser14 and Asp157 were exchanged (Ser14-->Cys and Ser14-->Cys, Asp157-->Ala, respectively). Both of these residues are part of invariant sequences in the loops, which bind the ATP phosphates, in the interdomain cleft of actin. The increased nucleotide exchange rate, and the decreased thermal stability and affinity for DNase I seen with the mutant actins indicated that the mutations disturbed the interdomain coupling. Despite this, the two mutant actins retained their ATPase activity. In fact, the mutated actins expressed a significant ATPase activity even in the presence of Ca2+ ions, conditions under which actin normally has a very low ATPase activity. In the presence of Mg2+ ions, the ATPase activity of actin was decreased slightly by the mutations. The mutant actins polymerized as the wild-type protein in the presence of Mg2+ ions, but slower than the wild-type in a K+/Ca2+ milieu. Profilin affected the lag phases and elongation rates during polymerization of the mutant and wild-type actins to the same extent, whereas at steady-state, the concentration of unpolymerized mutant actin appeared to be elevated. Decoration of mutant actin filaments with myosin subfragment 1 appeared to be normal, as did their movement in the low-load motility assay system. Our results show that Ser14 and Asp157 are key residues for interdomain communication, and that hydroxyl and carboxyl groups in positions 14 and 157, respectively, are not necessary for ATP hydrolysis in actin.  相似文献   

10.
The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent and dependent on the concentrations of choline kinase (K(m) = 27 microg/ml) and ATP (K(m) = 15 microM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSSQRRHS (V5max/K(m) = 17.5 mm(-1) micromol min(-1) mg(-1)) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway, whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Although the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHSLTRQ) containing Ser30 was a substrate (V(max)/K(m) = 3.0 mm(-1) micromol min(-1) mg(-1)) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C.  相似文献   

11.
以磷酸吡哆醛为辅酶的谷氨酸脱羧酶(Glutamate decarboxylase,GAD),能专一、不可逆地催化L-谷氨酸脱去α-羧基生成γ-氨基丁酸。为了提高GAD热稳定性为目标,本研究通过与嗜热古细菌Thermococcus kodakarensis中GAD氨基酸序列的比对及引入脯氨酸策略,最终在短乳杆菌Lactobacillus brevis CGMCC No.1306的GAD突变体中筛选得到热稳定性提高的突变酶G364P。结果显示,突变酶G364P在55℃的半衰期以及半失活温度分别比野生酶提高19.4 min和5.3℃,并且突变酶G364P的催化效率与野生酶相比没有明显变化。此外,利用分子动力学模拟来验证突变对蛋白质热稳定性的影响,突变酶G364P的均方根偏差(Rootmeansquare deviation,RMSD)以及含G364的loop区域均方根涨落(Root mean square fluctuation,RMSF)均比野生酶低,引入脯氨酸增加了364位氨基酸与相邻氨基酸的疏水相互作用。文中通过引入脯氨酸成功提高了L. brevis中GAD的热稳定性,同时也为其他酶热稳定性的理性设计提供了方法学指导。  相似文献   

12.
We increased drastically the heat stability of Lac repressor (LacR) of Escherichia coli. Wild-type tetrameric LacR denatures irreversibly at 53 degrees C. Improving hydrophobic packing at the dimerisation interface by a single substitution increases LacR heat-resistance by 40 deg. C without abolishing inducer binding at high and low temperatures. Tetrameric LacR mutants carrying substitutions of the positively charged amino acid Lys84 by each of the hydrophobic amino acids Leu, Ile and Met resist heating to temperatures up to 93 degrees C. We performed IPTG binding assays at 80 degrees C and found the mutant Lac repressors active and, thus, the core intact. Furthermore, the activity of LacR following heating is shown at room temperature by a gel retardation assay, which demonstrates normal oligomerisation state and function of the headpiece. The same mutations (K84L/I/M) in the dimer LacR331stop, carrying a stop codon in amino acid 331, increase thermostability of the dimer from 47 degrees C to 87 degrees C. LacRK84M represses beta-galactosidase activity in vivo as well as the wild-type and is sufficiently induced to allow growth on lactose. The results with both tetramer and dimer variants of LacR indicate mutual stabilisation of the tetramerisation region and the stable core.  相似文献   

13.
3-Isopropylmalate dehydrogenase (IPMDH) is a dimeric enzyme with a strongly hydrophobic core that is composed of residues from four alpha-helices. We replaced Glu253, which is found in the hydrophobic core and is part of the subunit interface of the Bacillus subtilis (Bs) IPMDH, with several other amino acids to probe. The thermostabilities of the mutants were assessed by measuring the residual enzymatic activities at 40 degrees C after heat treatment and by monitoring changes in ellipticity at 222 nm as the environmental temperature increased incrementally. The results of these studies indicate that, for residues with non-polar side chains, when positioned at residue 253, the thermostabilities of their corresponding mutants correlate positively with the relative hydrophobicities of the side chains. Relative activities of all mutants are lower than that of the wild-type enzyme. For two of the mutants, we directly show that the substitution at position 253 negatively affects Mn(2+) binding, which is required for catalysis. When a lysine is the position 253 residue, the protein dissociates. The results presented herein increase our understanding of the role played by the BsIPMDH dimer interface on the stability and activity of BsIPMDH.  相似文献   

14.
Flavolipin, an amino acid-containing lipid isolated from Flavobacterium meningosepticum, induces many immune responses. It has been shown that flavolipin does not induce an immune response of macrophages derived from C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4). To determine whether TLR4 or the molecular complex of TLR4 and TLR4 association molecule MD-2 mediates the flavolipin signal, flavolipin responsiveness was examined by measuring NF-kappaB activation in Ba/F3 cells and Ba/F3 transfectants expressing TLR4 or both TLR4 and MD-2. Flavolipin-induced NF-kappaB activation was detected in the cells expressing both TLR4 and MD-2, but not in the other cells. Expression of CD14 in the transfectant expressing both TLR4 and MD-2 increased the sensitivity to flavolipin. Furthermore, flavolipin stereoisomers were chemically synthesized, and their abilities to induce NF-kappaB activation were examined. (R)-Flavolipin, in which the configuration of the lipid moiety is R, induced NF-kappaB activation via the TLR4-MD-2 complex, but (S)-flavolipin did not. In this study, we demonstrated the involvement of TLR4-MD-2 and CD14 in flavolipin signaling and the importance of the (R)-configuration of the flavolipin lipid moiety for the induction of an immune response via TLR4-MD-2.  相似文献   

15.
16.
Much of the catalytic power of trypsin is derived from the unusual buried, charged side chain of Asp102. A polar cave provides the stabilization for maintaining the buried charge, and it features the conserved amino acid Ser214 adjacent to Asp102. Ser214 has been replaced with Ala, Glu, and Lys in rat anionic trypsin, and the consequences of these changes have been determined. Three-dimensional structures of the Glu and Lys variant trypsins reveal that the new 214 side chains are buried. The 2.2-A crystal structure (R = 0.150) of trypsin S214K shows that Lys214 occupies the position held by Ser214 and a buried water molecule in the buried polar cave. Lys214-N zeta is solvent inaccessible and is less than 5 A from the catalytic Asp102. The side chain of Glu214 (2.8 A, R = 0.168) in trypsin S214E shows two conformations. In the major one, the Glu carboxylate in S214E forms a hydrogen bond with Asp102. Analytical isoelectrofocusing results show that trypsin S214K has a significantly different isoelectric point than trypsin, corresponding to an additional positive charge. The kinetic parameter kcat demonstrates that, compared to trypsin, S214K has 1% of the catalytic activity on a tripeptide amide substrate and S214E is 44% as active. Electrostatic potential calculations provide corroboration of the charge on Lys214 and are consistent with the kinetic results, suggesting that the presence of Lys214 has disturbed the electrostatic potential of Asp102.  相似文献   

17.
The Saccharomyces cerevisiae CKI-encoded choline kinase is phosphorylated on a serine residue and stimulated by protein kinase A. We examined the hypothesis that amino acids Ser(30) and Ser(85) contained in a protein kinase A sequence motif in choline kinase are target sites for protein kinase A. The synthetic peptides SQRRHSLTRQ (V(max)/K(m) = 10.8 microm(-1) nmol min(-1) mg(-1)) and GPRRASATDV (V(max)/K(m) = 0.15 microm(-1) nmol min(-1) mg(-1)) containing the protein kinase A motif for Ser(30) and Ser(85), respectively, within the choline kinase protein were substrates for protein kinase A. Choline kinase with Ser(30) to Ala (S30A) and Ser(85) to Ala (S85A) mutations were constructed alone and in combination by site-directed mutagenesis and expressed in a cki1Delta eki1Delta double mutant that lacks choline kinase activity. The mutant enzymes were expressed normally, but the specific activity of choline kinase in cells expressing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 44, 8, and 60%, respectively, when compared with the control. In vivo labeling experiments showed that the extent of phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 70, 17, and 83%, respectively. Phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes by protein kinase A in vitro was reduced by 60, 7, and 96%, respectively, and peptide mapping analysis of the mutant enzymes confirmed the phosphorylation sites in the enzyme. The incorporation of (3)H-labeled choline into phosphocholine and phosphatidylcholine in cells bearing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 56, 27, and 81%, respectively, and by 58, 33, and 84%, respectively, when compared with control cells. These data supported the conclusion that phosphorylation of choline kinase on Ser(30) and Ser(85) by protein kinase A regulates PC synthesis by the CDP-choline pathway.  相似文献   

18.
Summary Various factors controlling dihydroxyacetone (DHA) and glycerol production from methanol by resting cell suspensions of a mutant of Hansenula polymorpha, blocked in DHA kinase and glycerol kinase, were investigated. The presence of methanol (250mM) and an additional substrate (0.5%, w/v) to replenish the xylulose-5-phosphate required for the assimilation reaction (DHA synthase) was essential for significant triose production by this double mutant. A number of sugars were tested as additional substrates and C5 sugars gave the highest triose accumulation (ca. 20mM after 45h). Glucose was the poorest additional substrate and triose production only started after its exhaustion, which occurred in the first few hours. Other sugars were metabolized at a much lower rate and accumulation of trioses began right at the start of the experiments and gradually increased with time. The production rate of total trioses increased, and the relative amount of glycerol diminished with higher oxygen supply rates. The data suggest that conversion of DHA into glycerol, catalysed by reduced nicotine adenine dinucleotide (NADH)-dependent DHA reductase, is partly regulated via intracellular NADH levels. Further support for this hypothesis was obtained in experiments with antimycin A, an inhibitor of the electron transport chain. Addition of higher amounts of methanol and xylose, either by increasing the initial concentrations or by repeated addition of these substrates, resulted in considerably enhanced productivity and a switch towards glycerol formation. After reaching a level of approximately 25mM the DHA concentration remained constant while the glycerol level gradually increased with time. After an incubation period of 350 h, a total of 3.9 M methanol and 0.62 M xylose had been converted, which resulted in accumulation of 0.76 M trioses, mostly glycerol.Offprint requests to: L. Dijkhuizen  相似文献   

19.
Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to alter the interaction between the middle and C-terminal subdomain of these enzymes. In all Nprs a cluster of hydrophobic contacts centered around residue 315 contributes to this interaction. In thermostable Nprs (like Npr-ste) a 10 residue beta-hairpin, covering the domain interface, makes an additional contribution. The hydrophobic residue at position 315 was replaced by smaller amino acids. In addition, the beta-hairpin was deleted from Npr-ste and inserted into Npr-sub. The changes in thermostability observed after these mutations confirmed the importance of the hydrophobic cluster and of the beta-hairpin for the structural integrity of Nprs. Combined mutants showed that the effects of individual mutations affecting the interaction between the subdomains were not additive. The effects on thermostability decreased as the strength of the subdomain interaction increased. The results show that once the subdomain interface is sufficiently stabilized, additional stabilizing mutations at the same interface do not further increase thermostability. The results are interpreted on the basis of a model for the thermal inactivation of neutral proteases, in which it is assumed that inactivation results from the occurrence of local unfolding processes that render these enzymes susceptible to autolysis.  相似文献   

20.
The 247-260 and 289-299 alpha-helices of Bacillus subtilis neutral protease have a lysine in their N-terminal turn. These lysines were replaced by Ser or Asp in order to improve electrostatic interactions with the alpha-helix dipole. After replacing Lys by Ser at positions 249 or 290, the thermostability of the enzyme was increased by 0.3 and 1.0 degrees C, respectively. The Asp249 and Asp290 mutants exhibited a stabilization of 0.6 and 1.2 degrees C, respectively. The results show the feasibility of stabilizing enzymes by introducing favourable residues at the end of alpha-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号