首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of different concentrations and activities of cytokinins on the morphogenesis of regenerated Rhododendron forrestii Balf. f. ex Diels. shoots taken from nodal segments were tested. We evaluated zeatin, zeatin riboside, izopentyladenine, izopentyladenine riboside, kinetin, kinetin riboside, benzylaminopurine, benzylaminopurine riboside. The experimental results were evaluated by mathematical methods and regression analysis describing the effect of isoprenic and aromatic type of cytokinins. On the basis of this modelling, maximum axillary shoot production was attained with medium supplemented with 2.0 mg·l−1 izopentyladenine riboside, 2.0 mg·l−1 benzylaminopurine and 20 g·l−1 sucrose. Minimal axillary shoots were produced with kinetin and kinetin riboside.  相似文献   

2.
In vitro propagation of cauliflower has generally been achieved through axillary shoot proliferation of curd explants on Murashige and Skoog (MS) medium supplemented with an auxin and a cytokinin. Recently, it has been shown (Vandemoortele 1999) that a soaking in sucrose (-2 MPa for 24 h) of cauliflower curd explants, before culture without any growth regulator, also induced axillary branching. The later procedure avoids the phenomenon of hyperhydricity in the shoots formed. Axillary shooting obtained by the two methods appears to be mediated by modifications of internal cytokinin levels. The osmotic pretreatment did not influence auxin levels, but induced a zeatin and a zeatin riboside levels increase. Curd explants cultured with the usual procedure (on MS medium supplemented with 5 μmol/L BA and 0.5 μmol/L NAA) showed a zeatin and zeatin riboside levels increase of the same magnitude and a higher one for isopentenyl adenine and isopentenyl adenosine. The modification of the cytokinin status in the curd explants subjected to a short osmotic pretreatment thus should be less favourable for hyperhydricity.  相似文献   

3.
We studied axillary meristem formation of the lateral suppressor (ls) mutant of tomato after elevating the endogenous cytokinin levels through introduction of the isopentenyltransferase (ipt) gene from Agrobacterium tumefaciens. Growth and development of several transformants were examined during in vitro culture. Transformants exhibited phenotypes varying in severity and were divided into four classes. A number of the ipt transformants had a normal phenotype, as non-transformed plants. Others showed a mild to severe cytokinin-like phenotype. Transformants with a mild phenotype exhibited reduced internode length and reduced root development. Transformants with a severe phenotype showed even shorter internodes, loss of apical dominance, reduction of leaf size, production of callus at the basis of the shoots and absence of root development or development of green non-branching roots. The severity of the phenotype correlated well with the level of ipt gene expression, as measured by northern analysis. Transformants with a severe phenotype also exhibited increased levels of zeatin riboside, but zeatin levels were not elevated. The increase in endogenous zeatin riboside levels in the ls mutant did not restore axillary meristem formation, but sometimes bulbous structures were formed in the initially empty leaf axils. Several adventitious meristems and shoots developed from below the surface of these structures. It is concluded that a reduced level of cytokinins in the ls mutant shoots is not responsible for the absence of axillary meristem formation.  相似文献   

4.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

5.
Summary The objective of this study was to evaluate the ability ofHosta Golden Scepter (GS) ovary explants to generate adventitious shootsin vitro. Ovaries were transversely cut into halves and transferred to petri dishes containingHosta initiation medium supplemented with naphthaleneacetic acid (NAA) at 2.5 μM and N6-benzyladenine (BA) at 10 μM. GS produced adventitious shoots from the ovary base via organogenesis. The number of adventitious shoots regenerated from callus increased linearly with repeated subculturing on Murashige and Skoog (MS) medium supplemented with 2.5 μM NAA and 10 μM BA. The number of multiple shoots developing from callus (15.8), shoot tip (8.4), leaf (6.7), and root (4.3) occurred on MS medium supplemented with 2.5 μM NAA and 20–30 μM BA. There were significant differences in the number of shoots regenerated from shoot tips and callus on MS medium with 50 and 100 mgmyo-inositol per l. Similarly, there were significant differences in the number of axillary shoots and adventitious shoots produced with 20 g/l sucrose treatment.  相似文献   

6.
ABSTRACT

Pinus massoniana is a recalcitrant tree species for rooting in vitro. We rejuvenated 26-year-old P. massoniana trees by successive grafting. Rooting rates of rejuvenated shoots were > 83.1% after rooting induction. We compared endogenous levels of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellins (GAs) and zeatin-riboside (ZR), and the rhizogenesis ability of axillary shoots of mature and rejuvenated materials in vitro, i.e., somaplants and grafts. Enhancement of the rooting ability of mature materials in vitro following somatic embryogenesis or repeated grafting onto juvenile rootstocks was accompanied by increased IAA and GAs levels, and by decreased ABA levels in scions used as starting material for micropropagation in vitro. Successive subcultures did not influence the rooting ability of shoots from untreated mature material. Rooting ability of shoots in vitro, however, gradually increased with subculture frequency during repeated subculturing in grafting materials. The IAA:ABA ratio in shoots in vitro after grafting five times, and consequently capable of root organogenesis, was higher than in shoots of untreated mature material incapable of root organogenesis in vitro. A high IAA:ABA ratio was detected in scions of somaplants that were capable of rooting in vitro despite subculture times. We found that the endogenous IAA:ABA ratio is a reliable marker for the recovery of root organogenesis in vitro after rejuvenating treatments for mature P. massoniana trees.  相似文献   

7.
Genetically transformed root clones of rapeseed (Brassica napus) were obtained afterin vitro infection of excised hypocotyl segments with a wild type strain ofAgrobacterium rhizogenes and two strains ofA. rhizogenes harbouring kanamycin resistance. The ability of hairy root formation was affected by light and was highly dependent on the location of the infection site at the hypocotyl. Inoculation of decapitated hypocotyls with an intact root system gave rise to direct shoot formation from the site of inoculation. Histological sections showed that several meristems were initiated at the inoculation site. Root and shoot clones were isolated and subcultured axenically in hormone-free liquid MS medium. Identification of transformed root and shoot clones was based on opine assays. Further selection was carried out in kanamycin-enriched medium.All opine-positive root clones showed NPT II (neomycin phosphotransferase) activity. Nearly half of the shoot clones expressed a strong NPT II activity while the rest gave a weak or no NPT II response.  相似文献   

8.
Three clones of Coriandrum sativum L. shoots were obtained from three seedlings and micropropagated alternately on modified MS media containing kinetin only and kinetin plus indolyl-3-acetic acid (IAA). During the first 9 months of culture the shoots possessed the juvenile phenotype after which a sharp transition to mature phenotype occurred. In 15–17 months this was followed by shoot necrosis and decrease in number of shoots in the clones, leading to death of the clones.Conditions of in vitro culture tripled the length of the juvenile period. Mature phase of the shoots was stable in that no reversion to the juvenile phase was observed. Partial rejuvenation of mature shoots took place owing to formation of adventitious shoots in the callus formed at the shoot base. However maturation of such rejuvenated adventitious shoots took place much more rapidly in comparison with micropropagated juvenile shoots derived from seedlings. Reduction of the morphogenic potential of the mature shoots after 15–17 months of subculturing, an increase in number of abnormal shoots and shoot necrosis indicated physiological ageing of the clones.Data presented in the paper provide evidence of the clone ageing phenomenon during prolonged subculture in vitro.  相似文献   

9.
Summary Cotyledonary nodes, excised cotyledons, and hypocotyl segments of six varieties ofVigna mungo andV. radiata have been tested for their morphogenic potential on media containing a range of hormonal combinations including benzyladenine, kinetin, thidiazuron (TDZ), and zeatin. Multiple shoots developed on cotyledonary node explants in all varieties tested on basal medium containing cytokinin. Presence of both the cotyledons, either full or half, resulted in a maximum number of shoots produced. Shoot bud regeneration was achieved via meristem formation on excised cotyledons on Murashige-skoog basal medium with B5 vitamins supplemented with TDZ. Mature plants had normal phenotypes.V. mungo var. PS1 andV. radiata var. Pusa 105 were found to be the most responsive varieties for shoot regneration. The histology ofin vitro organogenesis was studied.  相似文献   

10.
The effect of phytohormones on the breaking of dormancy of axillary buds in Salix pseudolasiogyne and their subsequent proliferation from nodal explants were examined. Nodal explants obtained from a 20–year-old S. pseudolasiogyne tree were cultured either on woody plant basal medium (WPM) or WPM supplemented with benzyladenine (BA, 2.2/4.4 μM), zeatin (1.1/2.2 μM), gibberillic acid (GA3, 2.9 and 14.5 μM), and GA3 + BA (2.9 + 4.4 μM). Although axillary shoots developed in all the media, a higher percentage bud break occurred on BA supplemented media. To corroborate the results, endogenous levels of cytokinins [Cks, N 6-isopentenyladenine (iP), zeatin riboside (t-ZR), dihydrozeatinriboside (DHZR)] and abscisic acid (ABA) were determined. On BA supplemented media, the levels of zeatin type (Z-type) of Cks were higher than those of isopentenyladenine type of Ck in the explants, while the ABA level was low. Axillary shoots did not grow well and became necrotic upon subculture to fresh basal WPM. In order to improve shoot growth, they were subcultured twice at a 4-week interval on to WPM supplemented with BA (2.2/4.4 μM), GA3 (1.4 μM), or GA3 + BA (1.4 + 4.4/2.9 + 4.4 μM). Maximal shoot growth (93%) was achieved on WPM supplemented with 2.2 μM BA. Comparative analyses of endogenous Cks revealed that higher Cks (Z-type Cks) were present in actively growing shoots. Rooting was readily achieved when the shoots were subcultured to WPM without phytohormones. The rooted plants were acclimatized well upon transplantation.  相似文献   

11.
Involvement of cytokinins (CKs) in axillary bud growth of miniature rose was studied. Variation in root formation and axillary bud growth was induced by two indole 3-butyric acid (IBA) pretreatments in two cutting sizes. At six physiological developmental stages around the onset of axillary bud growth, concentrations of CKs were determined in both root and axillary bud tissue by liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESP-MS/MS). Chronological early onset of axillary bud growth occurred in long cuttings pretreated at low IBA concentration, whereas physiological early root formation was associated with long cuttings and high IBA concentration. The CKs zeatin (Z), isopentenyl adenine (iP), zeatin riboside (ZR), dihydrozeatin riboside (DHZR), isopentenyl adenosine (iPA), zeatin O-glucoside (ZOG), zeatin riboside O-glucoside (ZROG), zeatin riboside 5-monophosphate (ZRMP), and isopentenyl adenosine 5-monophosphate (iPAMP) were detected. Concentrations of CKs in axillary bud tissue far exceeded those in root tissue. Indole 3-butyric acid pretreatment influenced the concentration of CKs in axillary bud tissue more than did cutting size, whereas pretreatments only slightly affected CKs in root tissue. The dominant CKs found were iPAMP and ZR. An early and large increase in iPAMP indicated rapid CK biosynthesis in rootless cuttings, suggesting that green parts, including the axillary bud, can synthesize CKs. At the onset of axillary bud growth an increase in concentration of Z, ZR, ZRMP, ZOG, and ZROG was largely coincident with a decrease in iPAMP, iPA, iP, and DHZR. After the onset of axillary bud growth, CK content largely decreased. These results strongly indicate a positive role for CKs in axillary bud growth, and presumably ZRMP, ZR, and Z are active in miniature rose.  相似文献   

12.
Summary Stem segments from apical shoot tips of Polygala myrtifolia were used as primary explants to establish in vitro cultures. Axillary shoots produced on non-contaminated explants were excised and recultured in the same medium to increase the stock of shoot cultures. Equal molar concentrations of five cytokinins [2-isopentenyladenine, kinetin, zeatin, N 6-benzyladenine (BA), and adenine] were tested for ability to induce axillary shoot development from double-node stem segments. The highest rate of axillary shoot proliferation was induced on Murashige and Skoog agar medium supplemented with 1.8 μM BA. Seven indole-3-acetic acid (IAA) concentrations (0, 2.9, 5.7, 8.6, 11.4, 14.3, 17.1 μM) were tested to determine the optimum conditions for in vitro rooting of microshoots. Up to 72% of the microshoots rooted with 14.3 μM IAA. Other auxins tested, α-naphthaleneacetic acid and indole-3-butyric acid, were less effective than IAA in inducing adventitious root formation. All rooted plantlets having more than three roots were successfully established in soil.  相似文献   

13.
Summary Expiants ofCichorium intybus L. storage roots were grownin vitro on a modified Heller's medium lacking auxins and cytokinins, or supplemented with auxins (either 2,4-D or NAA) alone or with a cytokinin (kinetin) or auxin and kinetin combinations in different concentrations. The morphogenetic responses of root explants varied with the different hormonal treatments. The best response for callus growth was obtained in presence of 2,4-D. On the contrary, kinetin alone was very effective for shoot induction, increasing the formation of adventitious buds (up to 100% of the explants) in respect to control (hormone-free medium). NAA induced either shoot differentiation (in a medium frequency) or root formation. Expiants excised from root zones near to apex, which showed on hormone-free medium a very low regenerative capacity (lower than proximal zones of the root), responded to kinetin by increasing significantly the number of shoots from adventitious buds.Cytological analyses in developing primary calli showed, in all media, high incidence of amitotic phenomena confirmed by DNA cytophotometry in calli at different growth stages. The histological analysis demonstrated the formation of meristematic growth centers on the organogenesis inducing media and the subsequent development of these meristemoids as shoot (or root) apices in the callus mass.The results are discussed in comparison with previous observations of the authors inCichorium intybus (Caffaro et al. 1982) and in relation to the action of hormonal treatments on callus formation and organogenesis. The cytological and histological results are also discussed in relation to the hormonal composition of the medium.  相似文献   

14.
A system for in vitro regeneration of Aloe arborescens was developed using young inflorescences as explants. Different phytohormone combinations of N-phenyl-N′-1,2,3-thiadiazol-5-yl urea (TDZ), benzyladenine (BA), 6-(γ,γ-dimethylallyl-amino)purine riboside (2iPR), zeatin ribozide (ZR), N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and kinetin (K), with or without ancymidol, were examined in order to induce plant regeneration. Efficient shoot regeneration was initiated on Murashige and Skoog (MS) medium supplemented with BA or TDZ. MS medium enriched with 19.6, 22.2 μM BA and 3.92 μM ancymidol (MSBA5/1 medium), promoted organogenesis enabling 87.3% of the explants to regenerate 6.04 ± 1.79 shoots/explant. Subsequent shoot elongation and plant regeneration were strongly affected by the medium composition used for shoot induction. Optimal elongation (three to four shoots per explant) was obtained when shoots, initiated on MSBA5/1 medium, were subsequently transferred onto MS containing only 4.4 μM BA. Rooting was performed on MS media lacking growth regulators. Histological analysis revealed that the initiated shoots originated from the receptacle tissue surrounding the residual vascular tissue of the flower buds.  相似文献   

15.
Summary A protocol for clonal propagation of eastern white cedar (Thuja occidentalis L.) was enhanced by optimizing the shoot multiplication stage using unbranched in vitro-produced shoots. This was achieved by careful selection of different medium components. An optimum range of 10 to 14 axillary shoots was obtained when shoots were cultured on half-strength Quiorin and LePoivre medium containing 10μM filter-sterilized zeatin for 3 wk. Transfer of the treated shoots to cytokinin-free medium containing 0.05% activated charcoal improved both the number and quality of the axillary shoots produced. Maximum axillary bud induction was also accomplished when shoots were pulsed in 1 mM liquid, filter-sterilized zeatin for 3 h, and then transferred to half-strength Quiorin and LePoivre, charcoal-containing medium. Inclusion of 4% sucrose improved the number of axillary shoots obtained. Half strength of the major salts produced an optimum response. Shoots obtained from different cultures (1 to 5 yr old) responded similarly to the applied cytokinin; however, newly induced shoots (4 mo. old) gave a significantly higher response.  相似文献   

16.
Summary Continuous axillary shoot proliferation and in vitro flowering were achieved using single node explants from a mature (over 70-yr-old) field clump of Dendrocalamus giganteus (giant bamboo). The shoots proliferated in a basal Murashige and Skoog medium with 6 mgl−1 (26.6 μM) N6-benzyladenine (BA) and 2% sucrose. The rate of shoot proliferation gradually increased to over three-fold before in vitro flowering took place. In vitro flowering was not the expression of a species-specific mechanism believed to occur during gregarious flowering, as the mother clump did not flower. The rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation leading to build up, and release of stress in relation to flowering and its reversion are discussed.  相似文献   

17.
Monacelli  B.  Altamura  M. M.  Pasqua  G.  Biasini  M. G.  Sala  F. 《Protoplasma》1988,142(2-3):156-163
Summary A histological study ofin vitro cultured cotyledonary expiants of tomato (Lycopersicon esculentum) was performed in order to determine the site (differentiated tissue or developing callus) and the mode of plant regeneration.Results have shown that callus develops at the excision sites of cotyledonary expiants and that shoots are formed exclusively within the unorganized callus: excision areas are the only morphogenetic sites and the proximal excision is the preferred site for plant regeneration.Shoots differentiate by organogenesis within the superficial region of the callus. Few neocambial cells cooperate in the neoformation. Origin from a single cell is highly unlikely since rarely observed single activated cells never developed into shoots.Regenerated plants may be chimeras if invitro culture induces genetic diversity in the initial cells.Abbreviations IAA Indole-3-acetic acid - c callus - d vegetative dome - s shoot - ad adaxial - ab abaxial - t tracheid - p parenchyma - S sieve tube  相似文献   

18.
Summary Side shoots excised from underground dormant buds ofCynara scolymus L. were used as primary explants to establishin vitro cultures. A 3×3 factorial experiment with all possible combinations of three concentrations (0.5, 1.0, 2.0 mg/liter or 2.22, 4.44, 8.88 μM) ofN 6-benzyladenine (BA) and three concentrations (0, 0.1, 0.2 mg/liter or 0, 0.54, 1.07 μM) of 1-naphthaleneacetic acid (NAA) was used to determine the optimum growth regulator combination for shoot multiplication. The highest rate of axillary shoots was induced on Murashige and Skoog agar medium supplemented with 0 mg NAA/liter and 1.0 mg BA/liter (4.44 μM). Other cytokinins tested (kinetin, zeatin, and 2-isopentenyl-adenine were less effective than BA in inducing axillary shoot growth. Up to 60% of elongated microshoots rooted after 5 weeks on 1/2 MS agar medium supplemented with 2 mg/liter (11.42 μM) indole-3-acetic acid (IAA). Seventy percent of rooted plantlets were transferred successfully into soil. Plants are under evaluation for their genetic uniformity and clonal fidelity.  相似文献   

19.
Multiple shoots were induced on stem segments of an 8-y-old plant of Metrosideros excelsa Sol ex Gaertn. “Parnel”. Axillary shoots produced on uncontaminated explants were excised, segmented, and recultured in the same medium to increase the stock of shoot cultures. The Murashige and Skoog (MS) medium, augmented with different concentrations of 2- isopenthenyladenine (2iP) and indole-3-acetic acid (IAA), either singly or in combinations, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment, equal molar concentrations of four cytokinins [2iP, kinetin, zeatin, and N 6-benzyladenine (BA)] in combination with equal molar concentrations of three auxins [IAA, α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA)] were tested for ability to induce axillary shoot development from single-node stem segments. The highest rate of axillary shoot proliferation was induced on MS agar medium supplemented with 1.96μM 2iP and 1.14μM IAA after 6 wk in culture. Different auxins (IAA, IBA, and NAA) were tested to determine the optimum conditions for in vitro rooting of microshoots. The best results were accomplished with IAA at 5.71μM (89% rooting) and with IBA at 2.85 or 5.71μM (86% and 86% rooting, respectively). Seventy and 90 percent of the microshoots were rooted ex vitro in bottom-heated bench (22 ± 2°C) after 2 and 4 wk, respectively. In vitro and ex vitro rooted plantlets were successfully established in soil.  相似文献   

20.
Phylloclade explants of Schlumbergera and Rhipsalidopsis were cultured in vitro to produce axillary and adventitious shoots. The explants of both species, taken from greenhouse-grown plants, produced only axillary shoots. There was a pronounced improvement in adventitious shoot formation in phylloclade explants of cultivar CB4 of Rhipsalidopsis by increasing numbers of subcultures of axillary shoots used as donor plants. The axillary shoots generated from the explants were either subcultured to produce successive generations of axillary shoot cultures or made into phylloclade explants and tested for adventitious shoot formation at each subculture. The duration of each subculture varied from 6 to 12 weeks. After the first subculture, sporadic adventitious shoot formation began, and after the third subculture 87% explants of cultivar CB4 produced adventitious shoots at a frequency of about 12 shoots per explant. In contrast, there was no improvement in regenerative ability in explants of cultivar Thor-Olga of Schlumbergera up to third subculture. Adventitious shoots could be produced by callus culture too. Cultivar CB4 was highly regenerative, producing as many as 10 adventitious shoots per square cm of callus. In vitro grown plantlets, when transferred to pots continued to show prolific growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号