首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miklya I  Knoll J 《Life sciences》2003,72(25):2915-2921
Endogenous and synthetic enhancer substances enhance in low concentration the impulse propagation mediated release of transmitters from the catecholaminergic and serotonergic neurons in the brain. The purpose of this study was to see whether uptake or MAO inhibition or agonists have similar enhancing prospectives as the enhancer substances. We measured the electrical stimulation induced release of [3H]-norepinephrine or [3H]-dopamine or [3H]-serotonin from the isolated brain stem of rats. (-)-1-Benzofuran-2-yl)-2-propylaminopentane HCl [(-)-BPAP] was used as a prototype of the enhancer compounds. 50 ng/ml (-)-BPAP was the most effective concentration in enhancing the nerve stimulation induced release of [3H]-norepinephrine and [3H]-dopamine, 10 ng/ml (-)-BPAP was highly effective in enhancing the release of [3H]-serotonin. In contrast, 250 ng/ml desmethylimipramine (DMI), a selective inhibitor of the uptake of norepinephrine, did not change significantly the nerve stimulation induced release of [3H]-norepinephrine and 50 ng/ml fluoxetine, a selective inhibitor of the uptake of serotonin, did not change the release of [3H]-serotonin. Neither 250 ng/ml clorgyline, a selective inhibitor of MAO-A, nor 250 ng/ml lazabemide, a selective inhibitor MAO-B, was capable to significantly increase the nerve stimulation induced release of either [3H]-serotonin or [3H]-norepinephrine. The potent dopamine receptor agonists, pergolide and bromocriptine did not change significantly the release of [3H]-dopamine in 50 ng/ml concentration, which is sufficient to stimulate the dopamine receptors. The results prove that stimulation of catecholaminergic and serotonergic neurons in the brain via the enhancing mechanism is clearly different from influencing uptake or MAO.  相似文献   

2.
Abstract. In the fire ant Solenopsis invicta Buren, virgin females are capable of shedding their wings (dealation) and laying haploid eggs. However, dealation and reproduction are inhibited by a queen primer pheromone that depresses the release of Juvenile Hormone by the corpora allata. In an attempt to identify other neural signals that trigger the reproductive system, we measured the effect on brain biogenic amines of separation from the queen. Dopamine in the brain of virgin females increased from 552 ± 42 to 971 ± 65 fMol/brain when reproduction and dealation were stimulated by 15 days of separation. Octopamine and 5-hydroxytryptamine did not change significantly after the separation. Isolated virgin females fed with a tyrosine hydroxylase inhibitor 3-iodo- l -tyrosine mixed in sucrose for 15 days laid significantly fewer eggs and had fewer chorionated oocytes in their ovarioles than females fed with sucrose only. Restoring dopamine biosynthesis by adding l -dopa to the food also restored oogenesis and oviposition. Dealation was not affected by 3-iodo- l -tyrosine or l -dopa. The possible role of dopamine as the neural target of the queen pheromone regarding its potent allotoregulatory effect in other insects is discussed.  相似文献   

3.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

4.
Previously it has been shown that radiolabelled histamine is taken up by brain slices and may subsequently be released by depolarizing stimuli in a calcium-dependent manner, indicating the involvement of neurons in uptake and release of histamine.The present study demonstrates that after incubation of brain slices with low (nM) concentrations of [3H]histamine the amine may be taken up by (and released from) dopaminergic and serotonergic neurons (nerve terminals). Thus 6-hydroxydopamine- and 5,7-dihydroxytryptamine-induced lesions not only reduced the uptake of [3H]dopamine (in striatal slices) and [3H]serotonin (in hippocampal slices), but also, though to a lesser extent, that of [3H]histamine. Immunocytochemical findings revealed that the neurotoxins did not visibly affect histaminergic neurons. Lesioning of noradrenergic neurons appeared not to alter significantly the uptake of [3H]histamine. Further, various drugs acting on either catecholamine-, serotonin- or opioid-receptors and known to cause presynaptic inhibition of the release of [3H]dopamine or [3H]wrotonin from striatal or hippocampal slices also inhibited [3H]histamine release.It is concluded that incubation of brain slices with low concentrations of [3H]histamine does not result in a selective labelling of histaminergic neurons. The possibility that, unlike other monoamines, histamine is not subject to high-affinity uptake by the nerve terminals from which it was released, is discussed.  相似文献   

5.
Methods are described for the determination of sheep spinal cord tissue fluid content and norepinephrine, serotonin, and dopamine concentrations after experimental injury. The amount of tissue fluid varied in different regions of sheep spinal cord following injury. Norepinephrine and serotonin wet weight concentrations were corrected for this variation in tissue fluid. Corrected norepinephrine wet weight cord concentrations did not change up to 3 hr after injury. Levels of serotonin at 60 min after injury were similar to controls. Dopamine was not detected in sheep spinal cord. α-Methyl tyrosine significantly reduced fluid in the spinal cord at 75 min after injury. Hinwood B. G. et al. Monoamine and tissue fluid levels in contused spinal cord of sheep. J. Neurochem. 35, 786–791 (1980).  相似文献   

6.
The administration of phencyclidine (PCP) to mice resulted in no change in brain levels of tyrosine, dopamine (DA), norepinephrine (NE), or homovanillic acid (HVA). Although PCP reduced plasma tyrosine levels, no effect of PCP on the utilization of DA of NE after blockade of synthesis with α-methyl-p-tyrosine (AMPT) was observed. In addition, PCP did not affect the probenecid-induced accumulation of HVA. However, PCP was observed to potentiate the haloperidol-induced increase in HVA concentration, and the haloperidol-induced decline in DA levels after AMPT. The former effect was blocked by baclofen, suggesting that PCP mobilizes DA for impulse-dependent release. This effect could not be attributed to an antagonism of presynaptic DA receptors. These effects are similar to those of the “non-amphetamine” stimulant class of drugs.  相似文献   

7.
The effects of mercury compounds on the spontaneous and potassium-evoked release of [3H]dopamine from mouse striatal slices have been examined. All mercury compounds examined produced concentration-dependent increases in the spontaneous release of [3H]dopamine, with an order of potency of methylmercury greater than mercuric (Hg2+) mercury greater than p-choloromercuribenzene sulfonic acid. Methylmercury had no effect on the 25 mM potassium evoked release of [3H]dopamine in the presence of 1.3 mM calcium. However, in calcium-free conditions, methylmercury significantly increased the potassium-evoked release of [3H]dopamine. Mercuric mercury significantly reduced the 25 mM potassium evoked release of [3H]dopamine in the presence of 1.3 mM calcium, and this response was not reversible with brief washing of the tissue. In calcium-free conditions, mercuric mercury significantly elevated the evoked release of [3H]dopamine, similar to the result obtained with methylmercury. It is suggested that mercury compounds alter dopaminergic synaptic function, possibly by disrupting calcium homeostasis or calcium-dependent processes, and that methylmercury and mercuric mercury can have differential effects to alter dopaminergic neurotransmission.  相似文献   

8.
9.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Acetylcholine enhanced in a concentration-dependent way the K+ (15 mM)-evoked release of [3H]dopamine from synaptosomes isolated from rat corpus striatum and prelabeled with the radioactive catecholamine. The concentration-effect curve of ACh obtained in presence of 1.2 mM Ca2+ was progressively shifted to the left when [Ca2+] was lowered to 0.4 and to 0.2 mM. Intrastriatal injections of kainic acid reduced (70%) the uptake of [3H]choline in synaptosomes prepared 8 days after the lesion but did not affect significantly the uptake of [3H]dopamine. Also the release of [3H]dopamine evoked by K+ was minimally affected by kainic acid treatment. In contrast, acetylcholine (tested in presence of 1.2 or 0.2 mM Ca2+) was much more effective in enhancing [3H]dopamine release in synaptosomes from kainic acid-lesioned than from unlesioned striata. The results suggest that muscarinic receptors located on dopamine nerve terminals undergo supersensitivity following intrastriatal kainic acid injection.  相似文献   

11.
Termination of dopamine neurotransmission is primarily controlled by the plasma membrane-localized dopamine transporter. In this study, we investigated how this transporter is regulated by tyrosine kinases in neuronal preparations. In rat dorsal striatal synaptosomes, inhibition of tyrosine kinases by genistein or tyrphostin 23 resulted in a rapid (5-15 min), concentration-dependent decrease in [(3)H]dopamine uptake because of a reduction in maximal [(3)H]dopamine uptake velocity and dopamine transporter cell surface expression. The reduced transporter activity was associated with a decrease in phosphorylated p44/p42 mitogen-activated protein kinases. In primary rat mesencephalic neuronal cultures, the tyrosine kinase inhibitors similarly reduced [(3)H]dopamine uptake. When cultures were serum-deprived, acute activation of tyrosine kinase-coupled TrkB receptors by 100 ng/mL brain-derived neurotrophic factor significantly increased [(3)H]dopamine uptake; the effects were complex with increased maximal velocity but reduced affinity. The facilitatory effect of brain-derived neurotrophic factor on dopamine transporter activity depended on both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Taken together, our results suggest that striatal dopamine transporter function and cell surface expression is constitutively up-regulated by tyrosine kinase activation and that brain-derived neurotrophic factor can mediate this type of rapid regulation.  相似文献   

12.
The synthesis of dopamine (DA) has been studied in the striatum and cortex of rats exposed to a temperature of 40C for 2.5 or 24 h. The synthesis rate has been estimated 30 mn after an i.v. injection of 3H tyrosine (TY), by the evaluation of the ratio: 3H-DA specific activity 3H-TY specific activity. Cold exposure modified DA synthesis differently in the two brain areas. In the striatum, DA synthesis was multiplied by a factor of 1.5 after 2.5 h of cold exposure and returned to normal value after 24 h. In the cortex, cold exposure did not significantly change DA synthesis (at any of the two times studied).  相似文献   

13.
—Neuroblastoma cells of clone NIE-115, originally obtained from the murine tumor C1300, resemble normal noradrenergic neurons in that they have high levels of tyrosine 3-monooxygenase (EC 1.14.16.2; l -tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating)) and dopamine β-monooxygenase (EC 1.14.17.1; 3,4-dihydroxyphenylethylamine, ascorbate: oxygen oxidoreductase (β-hydroxylating)) activities, dense core versicles (100–300 nm in dia), long neurites and excitable membranes. These studies show that reserpine, a blocker of vesicular uptake in noradrenergic neurons, inhibits the accumulation and storage of catecholamines, as well as the conversion of dopamine to NE in neuroblastoma cells. Differentiated monolayer cultures took up [3H]dopamine [10−4] at a rate of 37 pmol/min per mg protein. Reserpine [5 × 10−5m ] did not affect the initial rate of uptake, but reduced the extent of uptake at saturation by 60%. Chromatographic examination of cell extracts showed that dopamine was converted to NE in control cultures, but not in reserpine treated cultures. Cells labelled with [3H]dopamine for 60 min and then exposed to release buffer without dopamine for an additional 60 min, retained approximately 40% of the label, 10% as dopamine and 30% as NE. Thirty-five per cent of the radioactivity retained was found, after homogenization and high speed centrifugation, to be associated with a particulate, subcellular fraction. Reserpine, present during release incubations, also reduced the ability of cells to store catecholamines. These results show that N1E-115 cells synthesize and store NE by reactions similar to those in normal noradrenergic neurons.  相似文献   

14.
Daily injections of 100 μg/kg of d -lysergic acid diethylamide (LSD) for 14 days produced a significant decrease in the dopamine level in rat brain corpus striatum which was still apparent 15 days after the last LSD treatment. Further LSD injections did not change the amount of dopamine depletion. In cerebral cortex, 14 days of LSD injections produced a significant decrease in the norepinephrine level and a significant increase in tyrosine hydroxylase activity. The elevated tyrosine hydroxylase activity was still present 15 days after the final LSD injection but only in those animals receiving daily vehicle injections during this period. Pre-treatment of rats with daily saline injections for 2 weeks before the 2 week period of LSD treatment prevented both the reduced norepinephrine content and elevated tyrosine hydroxylase activity usually found 24 h after the last LSD injection.  相似文献   

15.
Abstract— The effect of amantadine on the rate of dopamine synthesis in rat corpus striatum was determined by three methods. (1) Measuring the rate of decline of endogenous dopamine following inhibition of synthesis with a-methyltyrosine (α-MT); (2) Measuring the rate of conversion of [3,5-3H]tyrosine to 3H-labelled catechols under conditions of an initial rate; and (3) measuring the levels of homovanillic acid (HVA), the principal metabolite of brain dopamine. Endogenous dopamine levels were 68-1 n-mole/g with a control synthesis rate of about 21 n-mole/g/h as determined using either α-MT or [3,5-3H]tyrosine. Amantadine had no effect on synthesis at doses up to 100 mg/kg using α-MT and [3,5-3H]tyrosine. HVA levels were unaffected after 30 mg/kg drug, but were elevated 48%(P < 005) after 100 mg/kg of drug. By contrast apomorphine reduced and haloperidol increased synthesis as determined by all three methods. It is concluded that amantadine has no marked effect on dopamine synthesis in rat corpus striatum.  相似文献   

16.
It has been shown that nicotine prevents the loss of dopamine (DA) in the corpus striatum (CS) after 6-hydroxydopamine injection in the substantia nigra. To study the role of the enzyme tyrosine hydroxylase (TH; EC 1.14.16.2) in this experimental paradigm, we have examined its activity by assessing the accumulation of l-3,4-dihydroxyphenylalanine after inhibiting the subsequent enzyme in the DA synthetic pathway, aromatic l-amino acid decarboxylase, with 3-hydroxybenzylhydrazine. In addition the amount of TH protein was assessed by western blotting and its distribution in the CS was examined using immunohistochemical methods. 6-hydroxydopamine injection produced a significant decrease in DA levels and l-3,4-dihydroxyphenylalanine accumulation, as well as decreases in TH protein and TH immunoreactive fibres in the CS. After nicotine treatment, the decrease in TH protein in the CS was significantly reduced, with a concomitant preservation of TH activity, but nicotine did not alter the number of TH immunoreactive fibres. The activity and amount of TH did not change in the contralateral (intact) CS. Thus, nicotine induces long lasting TH plasticity in the degenerating CS. A synergistic action of nicotine-activated and lesion-originated signals appears necessary for the expression of this neuronal molecular plasticity.  相似文献   

17.
Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors mediating hippocampal [(3)H]noradrenaline or [(3)H]serotonin release, striatal [(3)H]dopamine release and cortical [(3)H]acetylcholine release were pharmacologically characterized using several AMPA/kainate receptor antagonists. The releases of the four transmitters elicited by exposing synaptosomes to AMPA were antagonized by NBQX, indicating that they reflect AMPA/kainate receptor activation. GYKI52466 did not inhibit the AMPA-induced release of [(3)H]noradrenaline, [(3)H]dopamine or [(3)H]serotonin, while it weakly affected the AMPA-mediated release of [(3)H]acetylcholine. On the contrary, LY300164 and LY303070 were potent antagonists able to discriminate among AMPA/kainate receptor subtypes. Both compounds blocked the AMPA receptors mediating [(3)H]dopamine and [(3)H]acetylcholine release. However, LY303070, but not LY300164, inhibited the AMPA-induced release of [(3)H]noradrenaline, while the AMPA-mediated [(3)H]serotonin release was sensitive to LY300164 but not to LY303070. SYM2206 mimicked LY300164 and prevented the AMPA-induced release of [(3)H]dopamine, [(3)H]acetylcholine and [(3)H]serotonin, but not that of [(3)H]noradrenaline. NS102 failed to antagonize the AMPA-induced release of all four transmitters. LY293558 prevented the AMPA-mediated release of [(3)H]noradrenaline, [(3)H]dopamine, [(3)H]acetylcholine or [(3)H]serotonin. Differently, LY377770 did not inhibit the AMPA-mediated release of [(3)H]noradrenaline and [(3)H]acetylcholine, but it potently blocked the AMPA-induced release of [(3)H]serotonin and, less so, of [(3)H]dopamine. AMOA inhibited the AMPA-induced release of [(3)H]serotonin or [(3)H]acetylcholine, but not that of [(3)H]noradrenaline or [(3)H]dopamine. GAMS prevented the AMPA-mediated release of [(3)H]acetylcholine and, more weakly, that of [(3)H]dopamine, but it failed to inhibit the release of [(3)H]noradrenaline or [(3)H]serotonin elicited by AMPA. gamma-DGG did not affect the AMPA-mediated release of any of the four transmitters studied. In conclusion, based on the antagonist profiles obtained, the four receptors here analyzed all belong to the AMPA-preferring subclass of glutamate receptors; however, they appear to differ from each other, probably due to differences in subunit composition. The compounds LY300164, LY303070, LY377770, AMOA and GAMS may be useful to discriminate among AMPA-preferring receptor subtypes.  相似文献   

18.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

19.
The effects of CH3HgCl and HgCl2 on the evoked release of 3H from mouse striatal slices prelabelled with [3H]dopamine have been examined. CH3HgCl (10 microM) was observed to increase the L-glutamate-evoked release of [3H]dopamine, while HgCl2 (10 microM) had no effect. In contrast, CH3HgCl at concentrations up to 100 microM had no effect on the 25 mM K+-stimulated release of [3H]dopamine, whereas HgCl2 (100 microM) significantly reduced the 25 mM K+-stimulated release of [3H]dopamine. Thus CH3HgCl and HgCl2 have differential effects on the L-glutamate- and K+-stimulated release of [3H]dopamine from mouse striatal slices, suggesting that these compounds may have different sites and (or) mechanisms of action in altering neurotransmitter release. It is suggested that CH3HgCl may act predominantly at intracellular sites or at the level of the L-glutamate receptor, whereas the major site of action of HgCl2 may be the voltage-operated calcium channel.  相似文献   

20.
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory drug, which also act as a mitochondrial toxin. As it is known that selective mitochondrial complex I inhibition combined with mild oxidative stress causes striatal dopaminergic dysfunction, we tested whether DCF also compromise dopaminergic function in the striatum. [3H]Dopamine ([3H]DA) release was measured from rat striatal slices after in vitro (2 h, 10-25 micromol/L) or in vivo (3 mg/kg i.v. for 28 days) DCF treatment. In vitro treatment significantly decreased [3H]DA uptake and dopamine (DA) content of the slices. H2O2 (0.1 mmol/L)-evoked DA release was enhanced. Intracellular reactive oxygen species production was not significantly changed in the presence of DCF. After in vivo DCF treatment no apparent decrease in striatal DA content was observed and the uptake of [3H]DA into slices was increased. The intensity of tyrosine hydroxylase immunoreactivity in the striatum was highly variable, and both decrease and increase were observed in individual rats. The H2O2-evoked [3H]DA release was significantly decreased and the effluent contained a significant amount of [3H]octopamine, [3H]tyramine, and [3H]beta-phenylethylamine. The ATP content and adenylate energy charge were decreased. In conclusion, whereas in vitro DCF pre-treatment resembles the effect of the mitochondrial toxin rotenone, in vivo it rather counteracts than aggravates dopaminergic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号