首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P143 protein of Autographa californica nuclear polyhedrosis virus is essential for replication of viral DNA. To determine the function of P143, the protein was purified to near homogeneity from recombinant baculovirus-infected cells that overexpress P143. ATPase activity copurified with P143 protein during purification and also during gel filtration at a high salt concentration. The ATPase activity did not require the presence of single-stranded DNA, but was stimulated fourfold by the addition of single-stranded DNA. The ATPase activity of P143 had a K(m) of 60 microM and a turnover of 4.5 molecules of ATP hydrolyzed/s/molecule of enzyme, indicating moderate affinity for ATP and high catalytic efficiency. P143 unwound a 40-nucleotide primer in an ATP-dependent manner, indicating that the enzyme possesses in vitro DNA helicase activity. Based on this result, it seems likely that P143 functions as a helicase in viral DNA replication.  相似文献   

2.
3.
ATP is the source of energy for numerous biochemical reactions in all organisms. Tailed bacteriophages use ATP to drive powerful packaging machines that translocate viral DNA into a procapsid and compact it to near-crystalline density. Here we report that a complex network of interactions dictates adenine recognition and ATP hydrolysis in the pentameric phage T4 large "terminase" (gp17) motor. The network includes residues that form hydrogen bonds at the edges of the adenine ring (Q138 and Q143), base-stacking interactions at the plane of the ring (I127 and R140), and cross-talking bonds between adenine, triphosphate, and Walker A P-loop (Y142, Q143, and R140). These interactions are conserved in other translocases such as type I/type III restriction enzymes and SF1/SF2 helicases. Perturbation of any of these interactions, even the loss of a single hydrogen bond, leads to multiple defects in motor functions. Adenine recognition is therefore a key checkpoint that ensures efficient ATP firing only when the fuel molecule is precisely engaged with the motor. This may be a common feature in the energy release mechanism of ATP-driven molecular machines that carry out numerous biomolecular reactions in biological systems.  相似文献   

4.
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma S-mediated reaction can go to completion when the duplex DNA substrate is only 1.3 kilobase pairs in length. The ATP gamma S-mediated reaction, however, is completely blocked by a 52-base pair heterologous insertion in either DNA substrate. This same barrier is readily bypassed when ATP replaces ATP gamma S. This indicates that at least one function of recA-mediated ATP hydrolysis is to bypass structural barriers in one or both DNA substrates during strand exchange. This suggests that ATP hydrolysis is directly coupled to the branch migration phase of strand exchange, not to promote strand exchange between homologous DNA substrates during recombination, but instead to facilitate the bypass of structural barriers likely to be encountered during recombinational DNA repair.  相似文献   

5.
The protein components required for generation of cohesive ends in vitro from circular bacteriophage P2 DNA have been purified to near homogeneity. In the presence of ATP, the purified products of P2 genes M and P together with empty phage capsids (comprised primarily of the N protein) mediate site-specific cleavage of circular P2 DNA at the cohesive end site (cos). This terminase or ter system also utilizes circular DNAs of bacteriophages P4 and 186, introducing site-specific scissions at cos sites within these molecules. The ter reaction exhibits a peculiar requirement for a circular DNA substrate. Substrate activity is greatly reduced when circular P2, P4, or 186 DNAs are linearized by restriction endonuclease hydrolysis. Furthermore, multimeric P4 DNA molecule sites are also essentially inactive in the linear form but are active in the circular state. The dependence of ter action on a circular substrate is not due to inhibition of the system by linear DNA, nor does it appear to reflect a requirement for substrate superhelicity since circular P4 DNA containing single strand scissions is subject to terminase action. The terminase reaction is supported by ATP, dATP, or beta, gamma-imido ATP, but not by other ribonucleoside triphosphates ADP, alpha, beta-methylene ATP, or beta, gamma-methylene ATP. A DNA-dependent ATPase, which hydrolyzes ATP to AMP, copurifies with the P2 P protein and is inactivated with the same kinetics as P activity upon treatment with N-ethylmaleimide. The ATPase does not display specificity for P2 DNA in vitro.  相似文献   

6.
Vaccinia virus encodes a polypeptide with DNA ligase activity.   总被引:4,自引:0,他引:4       下载免费PDF全文
Vaccinia virus gene SalF 15R potentially encodes a polypeptide of 63 kD which shares 30% amino acid identity with S. pombe and S. cerevisiae DNA ligases. DNA ligase proteins can be identified by incubation with alpha-(32P)ATP, resulting in the formation of a covalent DNA ligase-AMP adduct, an intermediate in the enzyme reaction. A novel radio-labelled polypeptide of approximately 61 kD appears in extracts from vaccinia virus infected cells after incubation with alpha-(32P)ATP. This protein is present throughout infection and is a DNA ligase as the radioactivity is discharged in the presence of either DNA substrate or pyrophosphate. DNA ligase assays show an increase in enzyme activity in cell extracts after vaccinia virus infection. A rabbit antiserum, raised against a bacterial fusion protein of beta-galactosidase and a portion of SalF 15R, immune-precipitates polypeptides of 61 and 54 kD from extracts of vaccinia virus-infected cells. This antiserum also immune-precipitates the novel DNA ligase-AMP adduct, thus proving that the observed DNA ligase is encoded by SalF 15R.  相似文献   

7.
Activation by the prokaryotic activator nitrogen regulator I (NRI, or NtrC) of Escherichia coli requires an interaction between two NRI dimers. ATP-dependent phosphorylation stimulates this tetramerization, which can be detected as cooperative binding to DNA. A polypeptide containing only the DNA-binding carboxyl-terminal domain has been previously shown to bind noncooperatively to DNA. Our primary purpose was to determine whether the highly conserved N-terminal domain or the ATP-binding central domain is required for cooperative DNA binding. Because ATP was present in the experiments that showed that phosphorylation enhances cooperative bindings, it is possible that ATP and not phosphorylation stimulated cooperative binding. Our secondary purpose was to separately assess the effects of ATP and phosphorylation on cooperative binding. We showed that a variant with a deletion of the central domain, NRI-(delta 143-398), binds cooperatively as well as unphosphorylated wild-type NRI, implying that the N-terminal domain mediates phosphorylation-independent cooperative binding. Phosphorylation of NRI-(delta 143-398) did not further stimulate this binding, suggesting that the ATP-binding central domain may be required for the phosphorylation-dependent enhancement. Cooperative binding was enhanced by either acetyl-phosphate-dependent (i.e., ATP-independent) phosphorylation of NRI or the specific binding of ATP to the central domain. Their effects were not additive, a finding which is consistent with the interpretation that each promotes a similar dimer-dimer interaction. We discuss these results within the context of the hypothesis that the highly conserved N-terminal domain mediates phosphorylation-independent cooperativity and the central domain is required for cooperativity stimulated by ATP binding or phosphorylation.  相似文献   

8.
The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex hydrolyzes two ATP molecules sequentially when placing beta around DNA. The first ATP is hydrolyzed fast, at 25-30 s(-1), while the second ATP hydrolysis is limited to the steady-state rate of 2 s(-1). This step-wise reaction depends on both primed DNA and beta. DNA alone promotes rapid hydrolysis of two ATP molecules, while beta alone permits hydrolysis of only one ATP. These results suggest that beta inserts a slow step between the two ATP hydrolysis events in clamp assembly, during which the clamp loader may perform work on the clamp. Moreover, one ATP hydrolysis is sufficient for release of beta from the gamma complex. This implies that DNA-dependent hydrolysis of the other ATP is coupled to a separate function, perhaps involving work on DNA. A model is presented in which sequential ATP hydrolysis drives distinct events in the clamp-assembly pathway. We also discuss underlying principles of this step-wise mechanism that may apply to the workings of other ATP-fueled biological machines.  相似文献   

9.
In complex with ATP, but not ADP, DnaA protein multimers unwind a specific region of duplex DNA within the chromosomal replication origin, oriC, triggering a series of reactions that result in initiation of DNA replication. Following replication initiation, ATP hydrolysis, which is coupled to DNA replication, results in the generation of initiation-incompetent ADP-DnaA. Suppression of overinitiation of replication requires that ADP-DnaA complexes be stably maintained until the next round of replication. Thus, the functional and structural requirements that ensure stable nucleotide binding to DnaA are crucial for proper regulation of replication. Here, we demonstrate that Glu143 of DnaA, located within the AAA+ box II N-linker motif, is a key residue involved in stable nucleotide binding. A Glu143 substitution variant of DnaA (DnaA E143A) bound to ADP on ice with an affinity similar to wild-type DnaA, but the resultant ADP-DnaA E143A complex was more labile at 37 °C than wild-type ADP-DnaA complexes. Consistent with this, conversion of ADP-DnaA E143A to ATP-DnaA E143A was stimulated at 37°C in the presence of ATP, which also stimulated replication of a minichromosome in an in vitro reconstitution reaction. Expression of DnaA E143A in vivo inhibited cell growth in an oriC-dependent manner, suggesting that DnaA E143A caused over-initiation of replication, consistent with the in vitro results. Glu is a highly conserved residue at the corresponding position of γ-proteobacterial DnaA orthologs. Our finding of the novel role for the DnaA N-linker region may represent a conserved function of this motif among those DnaA orthologs.  相似文献   

10.
Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD+ ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes auto-adenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD+ or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90 degrees C and nick-joining activity at 70 to 90 degrees C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.  相似文献   

11.
Sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. The Escherichia coli gamma complex loads the beta sliding clamp onto DNA in an ATP-dependent reaction in which ATP binding and hydrolysis modulate the affinity of the gamma complex for beta and DNA. This is the second of two reports (Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4376-4385) addressing the question of how ATP binding and hydrolysis regulate specific interactions with DNA and beta. Mutations were made to an Arg residue in a conserved SRC motif in the delta' and gamma subunits that interacts with the ATP site of the neighboring gamma subunit. Mutation of the delta' subunit reduced the ATP-dependent beta binding activity, whereas mutation of the gamma subunits reduced the DNA binding activity of the gamma complex. The gamma complex containing the delta' mutation gave a pre-steady-state burst of ATP hydrolysis, but at a reduced rate and amplitude relative to the wild-type gamma complex. A pre-steady-state burst of ATP hydrolysis was not observed for the complex containing the gamma mutations, consistent with the reduced DNA binding activity of this complex. The differential effects of these mutations suggest that ATP binding at the gamma1 site may be coupled to conformational changes that largely modulate interactions with beta, whereas ATP binding at the gamma2 and/or gamma3 site may be coupled to conformational changes that have a major role in interactions with DNA. Additionally, these results show that the "arginine fingers" play a structural role in facilitating the formation of a conformation that has high affinity for beta and DNA.  相似文献   

12.
The carcinogenic hydrocarbons 6-hydroxymethylbenzo[a]pyrene (6-HOCH2-B[a]P) and 6-acetoxymethylbenzo[a]pyrene (6-AcOCH2-B[a]P) were examined for their ability to bind to rat and calf thymus DNA. The data indicate there are no appreciable differences in the amount of binding to the two types of DNA. Non-enzymatic binding of 6-HOCH2-B[a]P was low (5 mumol hydrocarbon/mol DNA P) but 6-AcOCH2-B[a]P was bound to a considerable extent (88.4--97.3 mumol hydrocarbon/mol DNA P). Non-enzymatic binding of 6-HOCH2-B[a]P was greatly increased in the presence of ATP. Binding of 6-HOCH2-B[a]P in the presence of liver microsomes from untreated rats or from rats pretreated with 3-methylcholanthrene (3-MC) never exceeded 5 mumol hydrocarbon/mol DNA P. Binding of 6-HOCH2-B[a]P in the presence of a PAPS generating system was less than non-enzymatic binding mediated by ATP and was dependent on the presence of ATP rather than ATP and sulfate. Binding was reduced by 50% when ADP was employed in the non-enzymatic reaction and was negligible in the presence of AMP or adenosine, indicating that a diphosphate group is necessary. Incubation of 6-HOCH2-B[a]P with DNA in the presence of ATP, CTP, GTP, or UTP showed that ATP was the most effective mediator of the binding reaction. These observations suggest that 6-HOCH2-B[a]P is converted to a phosphate ester which, like 6-AcOCH2-B[a]P, is much more reactive than 6-HOCH2-B[a]P itself.  相似文献   

13.
Under the condition of expression of lambda P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the lambda P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the lambda P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of lambda P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.  相似文献   

14.
Isolation of altered recA polypeptides and interaction with ATP and DNA   总被引:10,自引:0,他引:10  
In this paper we describe the partial proteolytic digestion of recA proteins from Escherichia coli and Proteus mirabilis and the production and isolation of truncated recA polypeptides. A proteolytic fragment of the P. mirabilis recA protein bound single-strand DNA and ATP normally but has altered duplex DNA binding properties. This protein was shown to initiate but not complete DNA strand transfer from a DNA duplex to a complementary single strand. The product of the E. coli recA1 allele bound but could not hydrolyze ATP and the protein bound single-strand but not double-strand DNA. This protein did not appear to initiate the transfer of a strand from a linear duplex to a single-strand circle and inhibited the wild-type recA protein from performing strand transfer. We report that recA protein binds linear duplex DNA in a manner that enhances the rate of ligation by T4 DNA ligase. When heterologous single-strand DNA was added in addition to the duplex DNA large stable aggregates of protein and DNA were formed that could easily be sedimented from solution.  相似文献   

15.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

16.
We have examined the kinetics of interaction between Escherichia coli DNA gyrase and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (ADPNP) in the presence and absence of ATP. In the absence of ATP, [alpha-32P]ADPNP binds extremely slowly to gyrase, with an apparent second-order rate constant (k1) of 120 M-1 min-1. Similarly, the limited negative supercoiling of closed-circular DNA caused by ADPNP binding is slow, requiring at least 2 h to reach completion in the presence of 100 microM ADPNP. A very slow but detectable rate of dissociation of ADPNP from gyrase was measured, with a rate constant of 3.5 x 10(-4) min-1. The calculated dissociation constant for ADPNP is thus 2.9 microM. ADPNP is a potent competitive inhibitor of ATP-dependent DNA supercoiling. Inhibition is established much more rapidly than can be accounted for by the slow rate of ADPNP binding in the absence of ATP. We have found that ATP can accelerate the rate of [32P]ADPNP binding by more than 15-fold (k1 = 1,850 M-1 min-1). The ATP-promoted rate enhancement requires the presence of DNA; in the absence of DNA, ATP has no effect on the rate of binding. Relaxed closed-circular, nicked-circular, and linear pBR322 DNA are all equally effective cofactors for ATP-stimulated binding of ADPNP. After a short lag, the presence of ATP also greatly speeds up ADPNP dissociation from gyrase bound initially to closed-circular DNA, with the restoration of DNA supercoiling activity. This effect is not observed in the presence of nicked-circular or linear DNA, suggesting that ADPNP dissociates more rapidly from gyrase bound to supercoiled DNA. The results of ADPNP binding provide evidence for cooperative interactions between the nucleotide binding sites. To account for these data, a model is proposed for the interaction of nucleotides at the two ATP binding sites on DNA gyrase.  相似文献   

17.
Rad B  Kowalczykowski SC 《Biochemistry》2012,51(13):2921-2929
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, the steady-state ATP hydrolysis activity of RecQ was analyzed. We find that the rate of ATP hydrolysis increases with DNA length, reaching a maximum specific activity of 38 ± 2 ATP/RecQ/s. Analysis of the rate of ATP hydrolysis as a function of DNA length implies that the helicase has a processivity of 19 ± 6 nucleotides on ssDNA and that RecQ requires a minimal translocation site size of 10 ± 1 nucleotides. Using the T4 phage encoded gene 32 protein (G32P), which binds ssDNA cooperatively, to decrease the lengths of ssDNA gaps available for translocation, we observe a decrease in the rate of ATP hydrolysis activity that is related to lattice occupancy. Analysis of the activity in terms of the average gap sizes available to RecQ on the ssDNA coated with G32P indicates that RecQ translocates on ssDNA on average 46 ± 11 nucleotides before dissociating. Moreover, when bound to ssDNA, RecQ hydrolyzes ATP in a cooperative fashion, with a Hill coefficient of 2.1 ± 0.6, suggesting that at least a dimer is required for translocation on ssDNA. We present a kinetic model for translocation by RecQ on ssDNA based on this characterization.  相似文献   

18.
19.
Proteins that bind and hydrolyze ATP are frequently involved in the early steps of DNA replication. Recent studies of Saccharomyces cerevisiae suggest that two members of the AAA+ ATPase family--the origin recognition complex and Cdc6p--have separable roles for ATP binding and ATP hydrolysis during eukaryotic DNA replication. Intriguingly, the proposed regulation of these eukaryotic replication proteins by ATP has functional similarities to the ATP-dependent control of the DnaA and DnaC initiation factors from Escherichia coli. Comparison of the ATP regulation of these factors suggests that ATP binding and hydrolysis acts as a molecular switch that couples key events during initiation of replication. This switch results in a significant change in protein function.  相似文献   

20.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号