共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first note, we have demonstrated a 5-hydroxyindole acetic acid binding to plasma proteins. By gel filtration on Sephadex G 200 and polyacrylamide gel electrophoresis, the 5-hydroxyindole acetic acid carrier protein was identified to serum-albumin. 相似文献
5.
Indole and 7-derivatives, L- and D-tryptophan and 9 derivatives, and beta-carboline (norharman) and 11 derivatives were tested for mutagenicity to Salmonella typhimurium TA100 and TA98 after nitrite treatment. 1-Methylindole, which is present in cigarette smoke condensate (Grob and Voellmin, 1970; Hoffmann and Rathkamp, 1970), was the most mutagenic to TA100 without S9 mix after nitrite treatment, inducing 615,000 revertants/mg. 2-Methylindole, 1-methyl-DL-tryptophan, harmaline and (-)-(1S,3S)-1,2-dimethyl-1,2,3,4-tetrahydro-beta-carboline-3- carboxylic acid also showed strong mutagenicity after nitrite treatment, inducing 129,000, 184,000, 103,000 and 197,000 revertants/mg, respectively. These mutagenic potencies were comparable with those of benzo[alpha]pyrene, 3-methylcholanthrene and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) (Sugimura, 1982). Of 31 compounds tested, 22 were mutagenic after nitrite treatment. Since various indole compounds are ubiquitous in our environment, especially in plants, the presence of their mutagenicities after nitrite treatment warrants further studies, including those on their in vivo carcinogenicities. 相似文献
6.
Indole, indolylacetic acid, and tryptophan were oxidized by cloroperoxidases isolated from strains of Streptomyces lividans and Pseudomonas pyrrocinia. Indigo (indoxyl), isatin, and anthranilic acid (intermediate products of oxidative degradation of indole and indole derivatives) were extracted from the reaction medium. 相似文献
7.
Serum kinetics and organ distribution of [14C]-sialic acid-GM3 and [3H]-sphingosine-GM1, administered as an intravenous bolus, were analysed in Wistar rats. [3H]-GM1 and [14C]-GM3 had serum half-lives of 1.4 hours and 1.8 hours, respectively. Three hours after injection 75% of the GM1- and 38% of the GM3-associated label were present in the liver. Smaller yet significant amounts of label were present in the central nervous system, kidneys and lung. In vitro studies showed that [14C]-GM3 and [3H]-GM1 incubated with serum were predominantly bound to the High Density Lipoprotein and the Low Density Lipoprotein fractions. These results suggest a rapid serum clearance of exogenous gangliosides by the liver in rats. 相似文献
8.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair. 相似文献
10.
The 8beta-unsubstituted and substituted analogues of hydrocodone indole and hydromorphone indole were synthesized and their binding affinities to opioid receptors were determined. Introduction of an 8beta-methyl group into the indolomorphinan nucleus increased affinity at all opioid receptors. 6,7-Dehydro-4,5alpha-epoxy-8beta-methyl-6,7,2',3'-indolomorphinan (9) was found to be a delta antagonist with subnanomolar affinity (0.7 nM) for the delta-opioid receptor, and to have good delta-selectivity (mu/delta=322). 相似文献
11.
1. The effect of insulin, acetylcholine, histamine, 5-hydroxytryptamine and prostaglandins E1, E2 and F2alpha on basal and adrenalin-stimulated cyclic AMP content in intact pigeon erythrocytes was investigated. 2. None of these compounds influenced basal cyclic AMP contest, and only 5-hydroxytryptamine antagonized the effect of adrenalin. The increase in cyclic AMP with 0.55 micronM adrenalin was inhibited by approx. 60% in the presence of 10 muM 5-hydroxytryptamine. The interaction between adrenalin and 5-hydroxytryptamine was competitive. 3. 5-Hydroxytryptamine did not affect the rate of degradation of cyclic AMP in intact cells, but did inhibit adrenalin-stimulated cyclic AMP formation in permeable or resealed cell "ghosts". 4. The effect of 5-hydroxytryptamine to inhibit cyclic AMP accumulation was not dependent on the presence of Ca2+, in either intact cells or "ghosts". 5. Various indole derivatives and other compounds were tested for their ability to inhibit the effect of adrenalin on cyclic AMP accumulation. Only those derivatives with a free amino group and net positive charge in the side chain were effective. 6. It was concluded that 5-hydroxytryptamine inhibits adrenalin-stimulated adenylate cyclase activity in pigeon erythrocytes, possibly by competing with adrenalin for binding to the beta-adrenergic receptor. 相似文献
13.
(±)-[ 3H]Epinephrine and (?)-[ 3H]norepinephrine bind saturably to calf cerebral cortex membranes under appropriate incubation conditions in a fashion indicating that they label α-noradrenergic receptors. Binding of the two [ 3H]catecholamines is saturable with dissociation constants of 20–30 nM. Binding is stereoselective with (?)-norepinephrine displaying about twenty times greater affinity than (+)-norepinephrine. The relative potencies of catecholamines in competing for these binding sites parallels their relative pharmacologic effects at α-noradrenergic receptors in numerous tissues. Thus, (?)-epinephrine is 2–3 times more potent than (?)-norepinephrine and 500 times more potent than (?)-isoproterenol. Binding is inhibited by low concentrations of the α-antagonists phentolamine and phenoxybenzamine but not by the β-antagonist propranolol. 相似文献
15.
Purified alpha-bungarotoxin was isolated by chromatography and made radioactive with tritium ([3H]acetamidino-alpha-bungarotoxin). Infusions of [3H]alpha-bungarotoxin alone or preceded by tubocurarine or atropine were given into the third ventricle. 2. 12, or 24 h after injection the brains were prepared for autoradiography. Injections of alpha-bungarotoxin (radioinert) in buffer, or of [3H]parathyroid hormone in buffer, served as controls. The various patterns of labeling suggest the presence of nicotinic-cholinergic neurons within the arcuate and basolateral regions of the hypothalamus including the supraoptic and suprachiasmatic nuclei and, in addition, the central nucleus of the amygdala. 相似文献
16.
A relatively simple method for the determination of the diffusion coefficient of a substance that has been injected into tissue is described. We illustrate this method using [3]dexamethasone injected into the subcutaneous tissue of rats. Digital autoradiography was used to measure the distribution of the [3H] dexamethasone within the subcutaneous tissue at 2.5 and 20 min after injection. Measured concentration profiles of the injection were compared to a mathematical model of drug diffusion from an injection. There was good agreement between the experimental data and the mathematical model. The diffusion coefficient found using this simple injection method was (4.01 +/- 2.01) x 10(-10) m2/s. This D value was very close to the value of D = (4.11 +/- 1.77) x 10(-10) m2/s found previously using different mathematical and experimental techniques with osmotic pumps implanted for 6, 24, and 60 h in rats (1). The simple method given here for the determination of the diffusion coefficient is general enough to be applied to other substances and tissues as well. 相似文献
17.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate. 相似文献
18.
The inhibition of uptake of [3H] dopamine and [3H] 1-methyl-4-phenylpyridine (MPP+) was examined in mouse striatal synaptosomal preparations. Kinetic analysis indicated that ascorbic acid is a noncompetitive inhibitor of [3H] MPP+ uptake. No inhibition of [3H] dopamine uptake is observed. The dopamine uptake blockers, GBR-12909, cocaine, and mazindol strongly inhibit (IC50 less than 1 uM) both [3H] dopamine and [3H] MPP+ transport. Nicotine, its metabolites, and other tobacco alkaloids are weak inhibitors (IC50 greater than 1 mM) except 4-phenylpyridine and lobeline, which are moderate inhibitors (IC50 = 3 to 40 uM) of both [3H] dopamine and [3H] MPP+ uptake. These similarities in potencies are in agreement with the suggestion that [3H] MPP+ and [3H] dopamine are transported by the same carrier. The differences observed in the alteration of dopaminergic transport and mazindol binding by ascorbic acid suggest that ascorbic acid's effects on [3H] MPP+ transport are related to translocation and/or dissociation processes occurring subsequent to the initial binding event. 相似文献
20.
Retrograde axonal transport process was investigated in the afferent systems to the rat olfactory bulb, after [ 3H]noradrenaline ([ 3H]NA) injection into the olfactory bulb, in order to provide evidence regarding its specificity and the biochemical basis supporting this specificity. Radioautographs showed that [3H]NA unilaterally injected into the olfactory bulb at a concentration of 10−3 M, resulted in labeling of the structures afferent to the olfactory bulb, mainly on the injected side: locus coeruleus (LC), dorsal and central raphes, nucleus of the lateral olfactory tract and piriform cortex. Heavy labeling was observed on the noradrenergic LC cell bodies, whereas the radioautographic reaction was less intense on the other structures. After 10−4 M injection, the labeling intensity of the LC cell bodies was lower while very rare weakly labeled cell bodies persisted in the dorsal raphe, nucleus of the lateral olfactory tract and piriform cortex. The LC cell bodies were exclusively labeled when the concentration of [3H]NA injection was 10−5 M. All the other structures were devoid of labeling. It was still possible to detect labeled cell bodies in the LC for a 10−6 M concentration. Following bilateral injections of [3H]NA (10−3 M) the total radioactivity retrogradely transported to the LC represented about 4 times the total radioactivity measured in the periaqueductal gray substance (as control tissue of the tracer diffusion). Fractional study by ethanol of LC tissue homogenate and liquid scintillation counting of each fraction showed that 60% of the total radioactivity (about 2.5 times the control value) was in the supernatant and 40% (about 20 times the control value) was associated with the precipitate. In the other regions such as the dorsal and central raphes and periaqueductal gray substance, radioactivity was mainly found in the supernatant, except for the dorsal raphe whose precipitate contained a low amount of radioactivity (about 4 times the control value). Colchicine (an axonal transport inhibitor) bilaterally injected into the medial forebrain bundle and systemic administration of desipramine (a noradrenaline uptake inhibitor) decreased the radioactivity associated with the LC precipitate by 90 and 85% and the LC supernatant radioactivity by 55 and 35%, respectively. These pretreatments did not significantly affect the radioactivity amounts measured in the different fractions of dorsal and central raphes and periaqueductal gray substance. Radioautographic study after colchicine treatment showed a large decrease in the labeling intensity of the LC cell bodies as compared to the non-treated side. Therefore, we suggest that low concentrations (10−5 M) of [3H]NA injected in the olfactory bulb determine specific conditions of noradrenergic pathway labeling. This specific labeling after migration could be supported by the radioactive ethanol precipitate which would appear to contain [3H]NA- and/or 3H-derivatives-binding protein. Such a 3H-macromolecular complex, which could represent the specific carrier, may well undergo retrograde transport from the nerve terminals towards the cell bodies. 相似文献
|