首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oleg Timofeev  Entan Hu 《FEBS letters》2009,583(4):841-1967
Cdc25 phosphatases activate Cdk/Cyclin complexes by dephosphorylation and thus promote cell cycle progression. We observed that the peak activity of Cdc25A precedes the one of Cdc25B in prophase and the maximum of Cyclin/Cdk kinase activity. Furthermore, Cdc25A activates both Cdk1-2/Cyclin A and Cdk1/Cyclin B complexes while Cdc25B seems to be involved only in activation of Cdk1/Cyclin B. Concomitantly, repression of Cdc25A led to a decrease in Cyclin A-associated kinase activity and attenuated Cdk1 activation. Our results indicate that Cdc25A acts before Cdc25B - at least in cancer cells, and has non-redundant functions in late G2/early M-phase as a major regulator of Cyclin A/kinase complexes.  相似文献   

2.
Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic "collapse," a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.  相似文献   

3.
Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr161 by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr14 and Tyr15 phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G2/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr15. In addition, Tyr15-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G2 and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr161 phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G2/M is tightly coupled and regulated by Cdc25 phosphatases.  相似文献   

4.
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.  相似文献   

5.
The cyclin-dependent kinase inhibitors (CKIs) bind to and directly regulate the catalytic activity of cyclin-dependent kinase (Cdk)/cyclin complexes involved in cell cycle control and do not regulate other, closely related Cdks. We showed previously that the CKI, p27, binds to Cdk2/cyclin A though a sequential mechanism that involves folding-on-binding. The first step in the kinetic mechanism is interaction of a small, highly dynamic domain of p27 (domain 1) with the cyclin subunit of the Cdk2/cyclin A complex, followed by much slower binding of a more lengthy and less flexible domain (domain 2) to Cdk2. The second step requires folding of domain 2 into the kinase inhibitory conformation. Rapid binding of p27 domain 1 to cyclin A tethers the inhibitor to the binary Cdk2/cyclin A complex, which reduces the entropic barrier associated with slow binding of domain 2 to the catalytic subunit. We show here that p27/cyclin interactions are an important determinant of p27 specificity towards cell cycle Cdks. We used surface plasmon resonance, limited proteolysis, mass spectrometry, and NMR spectroscopy to study the interaction of p27 with Cdk2/cyclin A, and with another Cdk complex, Cdk5/p25, that is involved in neurodegeneration. Importantly, Cdk5/p35 (the parent complex of Cdk5/p25) is not regulated by p27 in neurons. Our results show that p27 binds to Cdk5 and Cdk2 with similar, slow kinetics. However, p27 fails to interact with p25 within the Cdk5/p25 complex, which we believe prevents formation of a kinetically trapped, inhibited p27/Cdk5/p25 complex in vivo. The helical topology of p25 is very similar to that of cyclin A. However, p25 lacks the MRAIL sequence in one helix that, in the cell cycle cyclins, mediates specific interactions with domain 1 of p21 and p27. Our results strongly suggest that p21 and p27, related Cdk inhibitors, select their cell cycle regulatory Cdk targets by binding specifically to the cyclin subunit of these Cdk/cyclin complexes as a first step in a sequential, folding-on-binding mechanism.  相似文献   

6.
In mammalian cells, three Cdc25 phosphatases A, B, C coordinate cell cycle progression through activating dephosphorylation of Cyclin-dependent kinases. Whereas Cdc25B is believed to trigger entry into mitosis, Cdc25C is thought to act at a later stage of mitosis and in the nucleus. We report that a fraction of Cdc25C localises to centrosomes in a cell cycle-dependent fashion, as of late S phase and throughout G2 and mitosis. Moreover, Cdc25C colocalises with Cyclin B1 at centrosomes in G2 and in prophase and Fluorescence Recovery after Photobleaching experiments reveal that they are both in dynamic exchange between the centrosome and the cytoplasm. The centrosomal localisation of Cdc25C is essentially mediated by its catalytic C-terminal domain, but does not require catalytic activity. In fact phosphatase-dead and substrate-binding hotspot mutants of Cdc25C accumulate at centrosomes together with phosphoTyr15-Cdk1 and behave as dominant negative forms that impair entry into mitosis. Taken together, our data suggest an unexpected function for Cdc25C at the G2/M transition, in dephosphorylation of Cdk1. We propose that Cdc25C may participate in amplification of Cdk1-Cyclin B1 activity following initial activation by Cdc25B, and that this process is initiated at the centrosome, then further propagated throughout the cytoplasm thanks to the dynamic behavior of both Cdc25C and Cyclin B1.  相似文献   

7.
Brault L  Bagrel D 《Life sciences》2008,82(5-6):315-323
Dual-specific phosphatases Cdc25 play a critical role in the cell cycle regulation by activating kinases of Cdk/cyclin complexes. Three Cdc25 isoforms (A, B and C) have been identified in mammalians. Cdc25A and B display oncogenic properties and are over-expressed in different tumors. Cdc25 phosphatases are therefore attractive targets for therapeutic strategies. Novel maleic anhydride derivatives bearing a fatty acid chain of variable size have been synthesized and tested for their Cdc25 inhibitory potential using an in vitro assay. We report biological activity of ineffective, moderate, and efficient inhibitors on breast cancer cells (MCF7) and its counterpart resistant to vincristine (Vcr-R). The most potent compounds induced Cdk2 inhibition and accumulation in G0/G1 phase of the cell cycle. Moreover, apoptosis was triggered within 48-h treatment, without oxidative burst and modulation of the Bax to Bcl-2 ratio. When used as pre-treatments, these derivatives were also able to potentiate adriamycin and cisplatin toxicity in both cell lines. Thus, maleic anhydride derivatives may mediate apoptosis through a cell cycle blockage via inhibition of Cdc25. This class of inhibitors may present potential interest in therapeutic strategies against cancer.  相似文献   

8.
Human Cdc25 phosphatases play important roles in cell cycle regulation by removing inhibitory phosphates from tyrosine and threonine residues of cyclin-dependent kinases. Three human Cdc25 isoforms, A, B, and C, have been discovered. Cdc25B and Cdc25C play crucial roles at the G(2)/M transition. In the present study, we have investigated the function of human Cdc25A phosphatase. Cell lines that express human Cdc25A in an inducible manner have been generated. Ectopic expression of Cdc25A accelerates the G(1)/S-phase transition, indicating that Cdc25A controls an event(s) that is rate limiting for entry into S phase. Furthermore, we carried out a detailed analysis of the expression and activation of human Cdc25A. Activation of endogenous Cdc25A occurs during late G(1) phase and increases in S and G(2) phases. We further demonstrate that Cdc25A is activated at the same time as cyclin E- and cyclin A-dependent kinases. In vitro, Cdc25A dephosphorylates and activates the cyclin-Cdk complexes that are active during G(1). Overexpression of Cdc25A in the inducible system, however, leads to a premature activation of both cyclin E-Cdk2 and cyclin A-Cdk2 complexes, while no effect of cyclin D-dependent kinases is observed. Furthermore, Cdc25A overexpression induces a tyrosine dephosphorylation of Cdk2. These results suggest that Cdc25A is an important regulator of the G(1)/S-phase transition and that cyclin E- and cyclin A-dependent kinases act as direct targets.  相似文献   

9.
The Rho family GTPase Cdc42 is recognized for its role in cellular proliferation and transformation. However, the mechanism by which it promotes cell cycle progression has remained undefined. Using an inducible expression system, we show that constitutively active Cdc42 (Cdc42V12) is sufficient by itself to induce anchorage-independent but not mitogen-independent growth in NIH3T3 cells. However, Cdc42V12 markedly accelerates activation of cyclin E-Cdk2 in response to mitogen. These effects were highly specific, as the kinetics of cyclin D-Cdk4 activation was unaltered. Cdc42V12 promotes Cdk2 activation by selectively inducing cyclin E expression without affecting other regulatory proteins such as the p27 Cdk inhibitor or Cdc25A. Furthermore, Cdc42V12 was able to activate a reporter gene driven by the cyclin E promoter in the absence of exogenous mitogen or adhesion. Cyclin E induction was sensitive to rapamycin but not inhibitors of mitogen-activated protein kinases, implicating p70 S6 kinase (p70S6k) as the relevant mediator. Consistent with this notion, wild type and constitutively active alleles of p70S6k were sufficient to activate the cyclin E promoter. In sum, these studies provide novel insights into the mechanism by which Cdc42 promotes G1 progression.  相似文献   

10.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

11.
Gap junctional intercellular communication (GJC) varies during progression of the cell cycle. We propose here that Cdc25A, a dual specificity phosphatase crucial for cell cycle progression, is linked to connexin (Cx) phosphorylation and the modulation of GJC. Inhibition of Cdc25 phosphatases in rat liver epithelial cells employing a 1,4-naphthoquinone-based inhibitor, NSC95397, induced cell cycle arrest, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), and activation of extracellular signal-regulated kinases ERK-1 and -2. ERK activation was blocked by specific inhibitors of MAPK/ERK kinases 1/2 or of the EGFR tyrosine kinase. An EGFR-dephosphorylation assay suggested that Cdc25A interacts with the EGFR, with inhibition by NSC95397 resulting in activation of the receptor. As a consequence of ERK activation, Cx43 was phosphorylated, resulting in a downregulation of GJC. Loss of GJC was prevented by inhibition of ERK activation. In summary, cell cycle and GJC are connected via Cdc25A and the EGFR-ERK pathway.  相似文献   

12.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

13.
Cdc25B is a dual specificity phosphatase involved in the control of cyclin-dependent kinases and the progression of cells through the cell cycle. A series of minimal domain Cdc25B constructs maintaining catalytic activity have been expressed. The structure of a minimum domain construct binding sulfate was determined at 1.9 A resolution and a temperature of 100 K. Other forms of the same co?nstruct were determined at lower resolution and room temperature. The overall folding and structure of the domain is similar to that found for Cdc25A. An important difference between the two is that the Cdc25B domain binds oxyanions in the catalytic site while that of Cdc25A appears unable to bind oxyanions. There are also important conformational differences in the C-terminal region. In Cdc25B, both sulfate and tungstate anions are shown to bind in the catalytic site containing the signature motif (HCxxxxxR) in a conformation similar to that of other protein tyrosine phosphatases and dual specificity phosphatases, with the exception of the Cdc25A. The Cdc25B constructs, with various truncations of the C-terminal residues, are shown to have potent catalytic activity. When cut back to the site at which the Cdc25A structure begins to deviate from the Cdc25B structure, the activity is considerably less. There is a pocket extending from the catalytic site to an anion-binding site containing a chloride about 14 A away. The catalytic cysteine residue, Cys473, can be oxidized to form a disulfide linkage to Cys426. A readily modifiable cysteine residue, Cys484, resides in another pocket that binds a sulfate but not in the signature motif conformation. This region of the structure is highly conserved between the Cdc25 molecules and could serve some unknown function.  相似文献   

14.
The signaling pathway leading to TGF-beta1-induced apoptosis was investigated using a TGF-beta1-sensitive hepatoma cell line, FaO. Cell cycle analysis demonstrated that the accumulation of apoptotic cells was preceded by a progressive decrease of the cell population in the G(1) phase concomitant with a slight increase of the cell population in the G(2)/M phase in response to TGF-beta1. TGF-beta1 induced a transient increase in the expression of Cdc2, cyclin A, cyclin B, and cyclin D1 at an early phase of apoptosis. During TGF-beta1-induced apoptosis, the transient increase in cyclin-dependent kinase (Cdk) activities coincides with a dramatic increase in the hyperphosphorylated forms of RB. Treatment with roscovitine or olomoucine, inhibitors of Cdc2 and Cdk2, blocked TGF-beta1-induced apoptosis by inhibiting RB phosphorylation. Overexpression of Bcl-2 or adenovirus E1B 19K suppressed TGF-beta1-induced apoptosis by blocking the induction of Cdc2 mRNA and the subsequent activation of Cdc2 kinase, whereas activation of Cdk2 was not affected, suggesting that Cdc2 plays a more critical role in TGF-beta1-induced apoptosis. In conclusion, we present the evidence that Cdc2 and Cdk2 kinase activity transiently induced by TGF-beta1 phosphorylates RB as a physiological target in FaO cells and that RB hyperphosphorylation may trigger abrupt cell cycle progression, leading to irreversible cell death.  相似文献   

15.
In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role.  相似文献   

16.
DNA replication in higher eukaryotes requires activation of a Cdk2 kinase by Cdc25A, a labile phosphatase subject to further destabilization upon genotoxic stress. We describe a distinct, markedly stable form of Cdc25A, which plays a previously unrecognized role in mitosis. Mitotic stabilization of Cdc25A reflects its phosphorylation on Ser17 and Ser115 by cyclin B-Cdk1, modifications required to uncouple Cdc25A from its ubiquitin-proteasome-mediated turnover. Cdc25A binds and activates cyclin B-Cdk1, accelerates cell division when overexpressed, and its downregulation by RNA interference (RNAi) delays mitotic entry. DNA damage-induced G(2) arrest, in contrast, is accompanied by proteasome-dependent destruction of Cdc25A, and ectopic Cdc25A abrogates the G(2) checkpoint. Thus, phosphorylation-mediated switches among three differentially stable forms ensure distinct thresholds, and thereby distinct roles for Cdc25A in multiple cell cycle transitions and checkpoints.  相似文献   

17.
The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis.  相似文献   

18.
Cdc25 phosphatases are essential for the activation of mitotic cyclin-Cdks, but the precise roles of the three mammalian isoforms (A, B, and C) are unclear. Using RNA interference to reduce the expression of each Cdc25 isoform in HeLa and HEK293 cells, we observed that Cdc25A and -B are both needed for mitotic entry, whereas Cdc25C alone cannot induce mitosis. We found that the G2 delay caused by small interfering RNA to Cdc25A or -B was accompanied by reduced activities of both cyclin B1-Cdk1 and cyclin A-Cdk2 complexes and a delayed accumulation of cyclin B1 protein. Further, three-dimensional time-lapse microscopy and quantification of Cdk1 phosphorylation versus cyclin B1 levels in individual cells revealed that Cdc25A and -B exert specific functions in the initiation of mitosis: Cdc25A may play a role in chromatin condensation, whereas Cdc25B specifically activates cyclin B1-Cdk1 on centrosomes.  相似文献   

19.
Cyclin D-Cdk4 complexes have a demonstrated role in G1 phase, regulating the function of the retinoblastoma susceptibility gene product (Rb). Previously, we have shown that following treatment with low doses of UV radiation, cell lines that express wild-type p16 and Cdk4 responded with a G2 phase cell cycle delay. The UV-responsive lines contained elevated levels of p16 post-treatment, and the accumulation of p16 correlated with the G2 delay. Here we report that in UV-irradiated HeLa and A2058 cells, p16 bound Cdk4 and Cdk6 complexes with increased avidity and inhibited a cyclin D3-Cdk4 complex normally activated in late S/early G2 phase. Activation of this complex was correlated with the caffeine-induced release from the UV-induced G2 delay and a decrease in the level of p16 bound to Cdk4. Finally, overexpression of a dominant-negative mutant of Cdk4 blocked cells in G2 phase. These data indicate that the cyclin D3-Cdk4 activity is necessary for cell cycle progression through G2 phase into mitosis and that the increased binding of p16 blocks this activity and G2 phase progression after UV exposure.  相似文献   

20.
The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号