首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclease type colicins and related bacteriocins possess the unprecedented ability to translocate an enzymatic polypeptide chain across the Gram-negative cell envelope. Here we use the rRNase domain of the cytotoxic ribonuclease colicin E3 to examine the structural changes on its interaction with the membrane. Using phospholipid vesicles as model membranes we show that anionic membranes destabilize the nuclease domain of the rRNase type colicin E3. Intrinsic tryptophan fluorescence and circular dichroism show that vesicles consisting of pure DOPA act as a powerful protein denaturant toward the rRNase domain, although this interaction can be entirely prevented by the addition of salt. Binding of E3 rRNase to DOPA vesicles is an endothermic process (DeltaH=24 kcal mol-1), reflecting unfolding of the protein. Consistent with this, binding of a highly destabilized mutant of the E3 rRNase to DOPA vesicles is exothermic. With mixed vesicles containing anionic and neutral phospholipids at a ratio of 1:3, set to mimic the charge of the Escherichia coli inner membrane, destabilization of E3 rRNase is lessened, although the melting temperature of the protein at pH 7.0 is greatly reduced from 50 degrees C to 30 degrees C. The interaction of E3 rRNase with 1:3 DOPA:DOPC vesicles is also highly dependent on both ionic strength and temperature. We discuss these results in terms of the likely interaction of the E3 rRNase and the related E9 DNase domains with the E. coli inner membrane and their subsequent translocation to the cell cytoplasm.  相似文献   

2.
Bacterial toxins commonly translocate cytotoxic enzymes into cells using channel-forming subunits or domains as conduits. Here we demonstrate that the small cytotoxic endonuclease domain from the bacterial toxin colicin E9 (E9 DNase) shows nonvoltage-gated, channel-forming activity in planar lipid bilayers that is linked to toxin translocation into cells. A disulfide bond engineered into the DNase abolished channel activity and colicin toxicity but left endonuclease activity unaffected; NMR experiments suggest decreased conformational flexibility as the likely reason for these alterations. Concomitant with the reduction of the disulfide bond is the restoration of conformational flexibility, DNase channel activity and colicin toxicity. Our data suggest that endonuclease domains of colicins may mediate their own translocation across the bacterial inner membrane through an intrinsic channel activity that is dependent on structural plasticity in the protein.  相似文献   

3.
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.  相似文献   

4.
The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil BtuB receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB.  相似文献   

5.
Translocation of colicin across the membrane of sensitive cells has been studied extensively. However, processing of the toxicity domain of colicin during translocation has been the subject of much controversy. To investigate the final translocation product of colicin across the membrane of Escherichia coli, an endogenously expressed His-tagged Im7 protein was constructed to detect any translocation product containing the DNase domain traversed the inner membrane into cytoplasm of the E. coli cells. As a result, a final processed DNase domain of ColE7 was identified in the intracellular space of the cells treated with Col-Im complex. In the presence of periplasmic extracts, in vitro processing of DNase domain of ColE7 was also observed. These results suggest that the processing of ColE7 has occurred for translocation of the DNase-type colicin across the membrane and the process is probably taking place in the periplasmic space of the membrane.  相似文献   

6.
The cytotoxic domain of the bacteriocin colicin E9 (the E9 DNase) is a nonspecific endonuclease that must traverse two membranes to reach its cellular target, bacterial DNA. Recent structural studies revealed that the active site of colicin DNases encompasses the HNH motif found in homing endonucleases, and bound within this motif a single transition metal ion (either Zn(2+) or Ni(2+)) the role of which is unknown. In the present work we find that neither Zn(2+) nor Ni(2+) is required for DNase activity, which instead requires Mg(2+) ions, but binding transition metals to the E9 DNase causes subtle changes to both secondary and tertiary structure. Spectroscopic, proteolytic, and calorimetric data show that, accompanying the binding of 1 eq of Zn(2+), Ni(2+), or Co(2+), the thermodynamic stability of the domain increased substantially, and that the equilibrium dissociation constant for Zn(2+) was less than or equal to nanomolar, while that for Co(2+) and Ni (2+) was micromolar. Our data demonstrate that the transition metal is not essential for colicin DNase activity but rather serves a structural role. We speculate that the HNH motif has been adapted for use by endonuclease colicins because of its involvement in DNA recognition and because removal of the bound metal ion destabilizes the DNase domain, a likely prerequisite for its translocation across bacterial membranes.  相似文献   

7.
The adsorption of lysozyme on mixed phosphatidyl choline-cardiolipin vesicles was studied at pH 4.0 and 6.0. The binding constants at both pH were determined at 0 and 22 degrees C. The presence of maximum on the adsorption isotherm at pH 6.0 was interpreted as an indication of the formation of two types of the protein-lipid complexes. This interpretation was confirmed by electron-microscopic observations. On the other hand, at pH 4.0 only one type of the protein-lipid complex was formed. The lysozyme conformation in solution and in the protein-lipid complexes was studied by circular dichroism. It was found that at acidic pH the lysozyme molecule contains a higher per cent of alpha-helix segments than at neutral pH. As follows from the measurements of lysozyme distribution in two phase systems the increase in alpha-helicity results in the formation of hydrophobic patches on the surface of the protein molecule. The results of the present work and of the previous studies of the interaction of red- and oxy- form of cytochrome C with phospholipid allow the conclusion that for peripheral proteins the nature of protein-lipid interactions is determined by the protein alpha-helix content and by hydrophobic pattern of the protein molecule surface.  相似文献   

8.
Based on the model of a toroidal protein-lipid pore, the effect of calcium ions on colicin E1 channel was predicted. In electrophysiological experiments Ca2+ suppressed the activity of colicin E1 channels in membranes formed of diphytanoylphosphatidylglycerol, whereas no desorption of the protein occurred from the membrane surface. The effect of Ca2+ was not observed on membranes formed of diphytanoylphosphatidylcholine. Single-channel measurements revealed that Ca2+-induced reduction of the colicin-induced current across the negatively charged membrane was due to a decrease in the number of open colicin channels and not changes in their properties. In line with the toroidal model, the effect of Ca2+ on the colicin E1 channel-forming activity is explained by alteration of the membrane lipid curvature caused by electrostatic interaction of Ca2+ with negatively charged lipid head groups.  相似文献   

9.
Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn(2+). Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn(2+)-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability.  相似文献   

10.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

11.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

12.
The mechanism(s) by which nuclease colicins translocate distinct cytotoxic enzymes (DNases, rRNases, and tRNases) to the cytoplasm of Escherichia coli is unknown. Previous in vitro investigations on isolated colicin nuclease domains have shown that they have a strong propensity to associate with anionic phospholipid vesicles, implying that electrostatic interactions with biological membranes play a role in their import. In the present work we set out to test this hypothesis in vivo. We show that cell killing by the DNase toxin colicin E9 of E. coli HDL11, a strain in which the level of anionic phospholipid and hence inner membrane charge is regulated by isopropyl beta-D-thiogalactopyranoside induction, is critically dependent on the level of inducer, whereas this is not the case for pore-forming colicins that take the same basic route into the periplasm. Moreover, there is a strong correlation between the level and rate of HDL11 cell killing and the net positive charge on a colicin DNase, with similar effects seen for wild type E. coli cells, data that are consistent with a direct, electrostatically mediated interaction between colicin nucleases and the bacterial inner membrane. We next sought to identify how membrane-associated colicin nucleases might be translocated into the cell. We show that neither the Sec or Tat systems are involved in nuclease colicin uptake but that nuclease colicin toxicity is instead dependent on functional FtsH, an inner membrane AAA(+) ATPase and protease that dislocates misfolded membrane proteins to the cytoplasm for destruction.  相似文献   

13.
Cellular import of colicin E3 is initiated by the Escherichia coli outer membrane cobalamin transporter, BtuB. The 135-residue 100-A coiled-coil receptor-binding domain (R135) of colicin E3 forms a 1:1 complex with BtuB whose structure at a resolution of 2.75 A is reported. Binding of R135 to the BtuB extracellular surface (DeltaG(o) = -12 kcal mol(-1)) is mediated by 27 residues of R135 near the coiled-coil apex. Formation of the R135-BtuB complex results in unfolding of R135 N- and C-terminal ends, inferred to be important for unfolding of the colicin T-domain. Small conformational changes occur in the BtuB cork and barrel domains but are insufficient to form a translocation channel. The absence of a channel and the peripheral binding of R135 imply that BtuB serves to bind the colicin, and that the coiled-coil delivers the colicin to a neighboring outer membrane protein for translocation, thus forming a colicin translocon. The translocator was concluded to be OmpF from the occlusion of OmpF channels by colicin E3.  相似文献   

14.
The effects of pH and temperature on the stability of interdomain interactions of colicin B have been studied by differential-scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The calorimetric properties were compared with those of the isolated pore-forming fragment. The unfolding profile of the full-length toxin is consistent with two endothermic transitions. Whereas peak A (T(m) = 55 degrees C) most likely corresponds to the receptor/translocation domain, peak B (T(m) = 59 degrees C) is associated with the pore-forming domain. By lowering the pH from 7 to 3.5, the transition temperature of peaks A and B are reduced by 25 and 18 degrees C, respectively, due to proton exchange upon denaturation. The isolated pore-forming fragment unfolds at much higher temperatures (T(m) = 65 degrees C) and is stable throughout a wide pH range, indicating that intramolecular interactions between the different colicin B domains result in a less stable protein conformation. In aqueous solution circular dichroism spectra have been used to estimate the content of helical secondary structure of colicin B ( approximately 40%) or its pore-forming fragment ( approximately 80%). Upon heating, the ellipticities at 222 nm strongly decrease at the transition temperature. In the presence of lipid vesicles the differential-scanning calorimetry profiles of the pore-forming fragment exhibit a low heat of transition multicomponent structure. The heat of transition of membrane-associated colicin B (T(m) = 54 degrees C at pH 3.5) is reduced and its secondary structure is conserved even at intermediate temperatures indicating incomplete unfolding due to strong protein-lipid interactions.  相似文献   

15.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

16.
Exposure to low pH triggers an increase in the hydrophobicity of the colicin E3 molecule. Using a [3H] Triton X-100 binding assay we have shown that the amount of detergent (at supramicellar concentrations) associated with colicin E3 increased dramatically at pH 3.8 and below. Interaction of colicin E3 with asolectin vesicles was monitored by following its cross-linking with two different photoactivatable radioactive phospholipid analogues. At neutral pH colicin E3 was cross-linked with the phospholipid probing the membrane surface whereas at pH 4.5 and below, the bacteriocin reacted with the phospholipid probing the hydrophobic core of the bilayer. With the use of phase partitioning of proteins in Triton X-114 it was shown that at acidic pH whole colicin E3 and its immunity protein segregated in the detergent phase. After trypsin digestion of the colicin-immunity complex, the N-terminal portion of E3 (T1) and the immunity partitioned in the detergent phase at low pH. In contrast, the enzymic domain of the colicin (T2) remained in the aqueous phase and was recovered in a highly active form as a consequence of its dissociation from the immunity protein. These results are discussed in relation to the mechanism of entry of colicin E3 into bacterial cells.  相似文献   

17.
Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel formation, and voltage-gated translocation of charged regions of the colicin domain across the membrane; (ii) structure-function data on the voltage-gated K(+) channel showing translocation of an arginine-rich helical segment through the membrane; (iii) toroidal channels formed by small peptides that involve local participation of anionic lipids in an inverted phase. It is proposed that translocation of the colicin across the membrane occurs through minimization of the Born charging energy for translocation of positively charged basic residues across the lipid bilayer by neutralization with anionic lipid head groups. The resulting pore structure may consist of somewhat short, ca. 16 residues, trans-membrane helices, in a locally thinned membrane, together with surface elements of inverted phase lipid micelles.  相似文献   

18.
Squalamine, an aminosterol antibiotic isolated from the dogfish shark, creates relatively large defects in phospholipid bilayers, allowing the unrestricted translocation of small molecules across these compromised membranes (B.S. Selinsky, Z. Zhou, K.G. Fotjik, S. R. Jones, N.R. Dollahon, A.E. Shinnar, Biochim. Biophys. Acta 1370 (1998) 218-234). However, an aminosterol structurally similar to squalamine was found to act as a proton ionophore in anionic phospholipid vesicles. In contrast with squalamine, gross membrane disruption was not observed with this synthetic analog (G. Deng, T. Dewa, S.L. Regen, J. Am. Chem. Soc. 118 (1996) 8975-8976). In this report, the ionophoric activity of squalamine was tested in anionic and zwitterionic phospholipid vesicles. No ionophoric activity was observed for squalamine in vesicles comprised of phosphatidylglycerol (PG), phosphatidylcholine (PC), or a mixture of the two lipids. Experiments using radiolabeled squalamine indicated that all of the squalamine added to PG vesicles remained with the vesicles, while approximately one-half of the squalamine added to PC vesicles was incorporated. We have synthesized the aminosterol analog of squalamine possessing ionophoric activity, and its ionophoric activity in PG vesicles was confirmed. The synthetic compound possessed no measurable lytic activity when added to preformed phospholipid vesicles. As both compounds possess significant antimicrobial activity, these results suggest that either multiple mechanisms for the antimicrobial activity of aminosterols exist, depending upon the aminosterol structure, or possibly an unrelated common mechanism for antimicrobial activity remains to be discovered.  相似文献   

19.
For improved immobilization of phospholipid vesicles and protein-lipid vesicles (cf. Sandberg, M., Lundahl, P., Greijer, E. and Belew, M. (1987) Biochim. Biophys. Acta 924, 185-192) and for chromatographic experiments with vesicles containing membrane protein, we have prepared octyl sulfide derivatives of the large-pore gels Sephacryl S-1000 and Sepharose 2B with ligand concentrations up to 14 and 5 mumol/ml gel, respectively. The Sephacryl derivatives allowed higher flow rates, gave higher rates of adsorption and showed equally high or higher capacities than the Sepharose adsorbents. 'Small', 'medium' and 'large' vesicles of radii approx. 20, 50 and 100 nm showed distribution coefficients on Sephacryl S-1000 of 0.7, 0.5 and 0.05, respectively and could be immobilized on octyl sulfide-Sephacryl S-1000 in amounts corresponding to 110, 40 and 20 mumol of phospholipids per ml gel, respectively. 'Small' vesicles became absorbed onto this gel at a rate of 1.5 mumol of phospholipids per min per ml gel until 60 mumol of phospholipids had become immobilized, whereas the initial adsorption rate was about 0.4 mumol.min-1.ml-1 on octyl sulfide-Sepharose 4B (see reference above) and on octyl sulfide-Sepharose 2B. Lower ligand concentrations gave lower capacities for 'small' vesicles. When vesicles entrapping calcein were immobilized on octyl sulfide-Sephacryl S-1000 some calcein was released during the adsorption process. For 'small' and 'medium' vesicles, respectively, the leakage was 75 and 25% at a ligand concentration of 14 mumol/ml but only 3 and 2% at 5 mumol/ml. The internal volumes of immobilized 'small' and 'medium' vesicles were estimated at 0.97 and 2.9 microliters per mumol of phospholipid by determination of entrapped calcein, which could indicate vesicle radii 20 and 50 nm, respectively. The total volumes of immobilized 'medium' lipid vesicles and 'medium' protein-lipid vesicles containing integral membrane proteins from human red cells, were estimated at 2.9 and 2.0 microliters/mumol, respectively, by chromatography of D- and L-[14C]glucose and calcein on the octyl sulfide-Sephacryl S-1000 column before and after immobilization. These volumes are roughly consistent with the internal volume of the vesicles. A zone of D-glucose eluted 90 microliters later than a zone of L-glucose on a 4- or 5-ml column of octyl sulfide-Sephacryl S-1000 with immobilized 'medium' protein-lipid vesicles containing the glucose transporter from human red cells, probably since part of the internal vesicle volume was accessible to the D-glucose but not to the L-glucose. This indicates that the glucose transporter was active in the immobilized vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号