首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Homogeneous catalytic subunit from the cAMP-dependent protein kinase, when derivatized with a fluorophore, was used as a cytochemical probe to locate intracellular sites of the protein kinase regulatory subunit. After conjugation, the fluoresceinated catalytic subunit (F:C), derivatized to a stoichiometry of approximately 1 mol/mol, retained near full activity as judged by specific activity and by titration against either regulatory subunit or Inhibitor Protein of the protein kinase. With this molecular probe the dissociated regulatory subunit was localized by direct cytochemistry in Reuber H-35 hepatoma cells that had been exposed, while intact, for 0-120 min to 10(-4) M 8-Br-cAMP. After stimulation, cultures were fixed and washed and then incubated for 16 h with F:C. Following 8-Br-cAMP stimulation, extensive binding of the probe to both cytoplasmic and nucleolar sites was observed. This binding was diminished but not eliminated when 50 microM cAMP was present during the incubation of the fixed cells with F:C that was eliminated by a 40-fold molar excess of underivatized catalytic subunit but not by heat-denatured catalytic subunit, and was not reduced by a 20-fold molar excess of cGMP-dependent protein kinase, examined plus or minus cGMP. Collectively, the results allow the conclusion that the F:C probe binds free regulatory subunit. The time course of its change with 8-Br-cAMP (measured as the difference between binding in the presence or absence of cAMP during the postfixation treatment) mirrors that previously reported for changes in the catalytic subunit in these cells, also identified cytochemically (Byus, C. V., and Fletcher, W.H. (1982) J. Cell Biol. 93, 727-734). The binding of the F:C probe, detected when cAMP is present during postfixation treatment, may possibly represent binding to free Inhibitor Protein of the cAMP-dependent protein kinase. If so, it was at a level of approximately 20% of the maximal level of detectable regulatory subunit, and it also showed cytosolic and nucleolar localization.  相似文献   

2.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

3.
4.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

5.
The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O- dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared to the cells treated with DBcAMP. Cultures incubated with 8-BrcAMP had significantly increased cytoplasmic and nucleolar fluorescence compared to unstimulated cells within 1 min of the addition of the analogue and reached a maximal level within 15 min. By employing a microspectrophotometer a distinct dose-dependent increase in cellular fluorescence (i.e., free catalytic subunit) was observed as the concentration of 8-BrcAMP was increased from 0.01 to 1.0 mM at 1, 5, 15, and 60 min following stimulation. The addition of glucagon (10(-6) M) to the culture also led to the activation of cAMP-dependent protein kinase as determined by an increase in the activity ratio. This increase was paralleled throughout the incubation period by a marked elevation in cytoplasmic and nucleolar fluorescence. The results reported herein suggest that both cyclic nucleotide analogues and a polypeptide hormone lead to the activation of cAMP-dependent protein kinase in similar intracellular compartments in Reuber H35 hepatoma cells...  相似文献   

6.
Site-specific analysis of tyrosine hydroxylase phosphorylation in rat pheochromocytoma led previously to the identification of a novel growth factor-sensitive serine/threonine protein kinase, designated proline-directed protein kinase (PDPK). In this article we describe further the activation, purification, subunit configuration, and biochemical characteristics of this cytoplasmic enzyme system. In human A431 epidermoid carcinoma cells PDPK activity was found to be stimulated by epidermal growth factor in a dose-dependent, time-dependent manner. The PDPK purified from the cytosol of mouse FM3A mammary carcinoma cells exhibited the same chromatographic behavior and biochemical properties as the tyrosine hydroxylase-associated enzyme purified originally from rat pheochromocytoma. The presence of p34cdc2 was ultimately detected in all active fractions of highly purified PDPK by Western blotting and immunoprecipitation; however, it was determined that this catalytic subunit is complexed with a 58-kDa regulatory subunit that is clearly distinct from that of the "growth-associated" M phase-specific histone H1 kinase (i.e. cyclin B). The 58 kDa regulatory subunit of PDPK was identified by direct immunoblotting as a mammalian A-type cyclin. Furthermore, the p58cyclin A subunit of PDPK was found to be phosphorylated on tyrosine residues in vivo and in vitro, the latter of which resulted in a significant increase in PDPK activity. Additional distinctions between this growth factor-sensitive PDPK (p34cdc2-p58cyclin A) and the M phase-specific histone H1 kinase (p34cdc2-p62cyclin B-p13suc1) are identified on the basis of chromatographic behavior, enzyme kinetics, and physicochemical properties. Based on these findings, it is proposed that PDPK represents a unique complex of the p34cdc2 protein kinase which is active in the cytoplasm of proliferative cells, is regulated differently from the M phase-specific histone H1 kinase by phosphorylation reactions, and is modulated selectively by growth factors.  相似文献   

7.
Reproducible induction of the enzyme tyrosine aminotransferase by dibutyryl cAMP (Bt2cAMP) in a line of HTC hepatoma cells in suspension culture requires that the cells be preinduced with dexamethasone, a synthetic glucocorticoid which itself induces tyrosine aminotransferase. Concentrations of dexamethasone that do not induce tyrosine aminotransferase fail to support Bt2cAMP induction, removal of the steroid from the medium leads to a loss of the Bt2cAMP effect, and an HTC cell line whose aminotransferase is not steroid-inducible does not respond to the cyclic nucleotide. We show that the further induction of tyrosine aminotransferase by Bt2cAMP in dexamethasone-treated cells is due to an increased rate of enzyme synthesis. The cyclic nucleotide has no effect on aminotransferase synthesis in cells grown in the absence of steroid. Several lines of evidence suggest that dexamethasone acts at a step beyond the activation of protein kinase by cAMP: (a) basal levels of cAMP are not altered by growth of HTC cells in dexamethasone; (b) accumulation of cAMP from the medium is not enhanced; (c) the glucocorticoid does not induce cAMP-dependent protein kinase in HTC cells; and (d) there is no augmentation of cAMP binding to the regulatory protein, nor is there any change in cAMP activation of protein kinase caused by growth in dexamethasone. These results help define a system that should be useful in studying the interaction of cyclic nucleotides and steroid hormones.  相似文献   

8.
Neuronal cdc2-like kinase, nclk, is a heterodimer of cyclin dependent protein kinase 5, cdk5, and a 25 kDa subunit derived from a novel, neuron-specific, 35 kDa protein: p35. The characterization and regulation of nclk will be summarized in this minireview. The activity of nclk appears to be governed by highly complex regulatory mechanisms including protein-protien interaction, protein phosphorylation and isoforms. The histone H1 kinase activity of nclk is absolutely dependent of the interaction between the 25 kDa subunit and the catalytic subunit, cdk5. In addition, nclk interacts with other cellular proteins to form macromolecular complexes. The kinase activity of nclk is inhibitedin vitro by the phosphorylation reactions of a weel-like protein tyrosine kinase and a protein serine/threonine kinase from bovine thymus. Northern blot analysis has revealed the existence of two populations of p35 mRNA of 2 and 4 kb. A novel cDNA encoding a p35 homologous protein has been obtained from a human hippocampus library.  相似文献   

9.
The alpha subunit of the sodium channel purified from rat brain is rapidly and selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 3 to 4 mol of 32P/mol of saxitoxin-binding activity. The rate of phosphorylation is comparable to that of the synthetic peptide analog of the phosphorylation site of pyruvate kinase, one of the best substrates for cAMP-dependent protein kinase. An endogenous cAMP-dependent protein kinase that is present in the partially purified sodium channel preparations also selectively phosphorylates the alpha subunit. The specificity and rapidity of the phosphorylation reaction are consistent with the hypothesis that the alpha subunit is phosphorylated by cAMP-dependent protein kinase in vivo.  相似文献   

10.
Gunzburg J  Veron M 《The EMBO journal》1982,1(9):1063-1068
We demonstrate the occurrence of a cAMP-dependent protein kinase in Dictyostelium discoideum cells at the terminal stage of differentiation. A cAMP-binding component was purified to homogeneity by affinity chromatography. This subunit inhibits the activity of purified catalytic subunit from beef heart protein kinase; the inhibition is reversed upon addition of cAMP. The protein is highly specific for cAMP and has a dissociation constant of 4 nM. The isolated regulatory subunit is a monomer of 39 K, with a sedimentation coefficient of 3.5S and a frictional coefficient of 1.24. The differences between this regulatory subunit and regulatory subunits of protein kinases from other sources are discussed.  相似文献   

11.
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines.  相似文献   

12.
Epidermal growth factor (EGF)-dependent transfer of radiolabeled phosphate from [gamma-32P]ATP to 160-kDa EGF receptor solubilized from human epidermoid carcinoma A431 cell surface membranes was stimulated up to 3-fold by addition of 3',5'-cAMP and purified cAMP-dependent protein kinase. Phosphorylation of EGF receptors was stimulated to the same extent when cAMP-dependent protein kinase catalytic subunit was substituted for 3',5'-cAMP and cAMP-dependent protein kinase. Phosphoamino acid analysis revealed that the extent of phosphorylation of EGF receptor at tyrosine residues was the same regardless of whether cAMP-dependent protein kinase catalytic subunit was present in or omitted from the system. Increased EGF receptor phosphorylation occurring in response to cAMP-dependent protein kinase catalytic subunit was accounted for by phosphorylation at serine or threonine residues. In samples phosphorylated in the presence of cAMP-dependent protein kinase catalytic subunit, phosphate was present in tyrosine, serine, and threonine in a ratio of 32:60:8. Two-dimensional mapping of radiolabeled phosphopeptides produced from EGF receptors by digestion with trypsin revealed the generation of one additional major phosphoserine-containing peptide when cAMP-dependent protein kinase was present with EGF in the EGF receptor kinase system. Degradation of 160-kDa EGF receptors to a 145-kDa form by purified Ca2+-activated neutral protease produced a 145-kDa fragment with phosphoserine content increased over that present initially in the 160-kDa precursor.  相似文献   

13.
Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coli and in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a low Km for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.  相似文献   

14.
The peripheral benzodiazepine receptor and protein kinase A have been proposed to modulate placental steroidogenesis. Binding of the radioactive benzodiazepine PK 11195 has been observed in membranes isolated from whole human placenta, but the presence of the peripheral benzodiazepine receptors, now called translocator protein, does not seem to be indispensable. We hypothesized that cAMP analogs could induce the translocator protein expression in BeWo cells increasing steroidogenesis in the presence of benzodiazepines. The effect of two benzodiazepines and of 8-Br-cAMP on steroidogenesis in BeWo cells or in isolated human placental mitochondria was studied. Benzodiazepines did not modify progesterone synthesis in either system. Progesterone increased three times in BeWo cells incubated in the presence of 8-Br-cAMP. The translocator protein was not identified by western blot in mitochondria isolated from either the human placenta or BeWo cells but it was present in isolated rat testicular mitochondria. Neither was it observed in isolated mitochondria from BeWo cells incubated with 8-Br-cAMP. An inhibitor of protein kinase A activity, H89, at 25 microM inhibited 90% the steroidogenesis in BeWo cells, even in the presence of 8-Br-cAMP, but protein phosphorylation in mitochondria increased in the presence of H89, suggesting that protein kinase A modulates the phosphorylation cycle of mitochondrial proteins. The results suggest that placental steroidogenesis is regulated via activation of protein kinase A modulated by cAMP.  相似文献   

15.
Abstract Tyrosine aminotransferase purified from epimastigotes of Trypanosoma cruzi displays an additional activity of alanine aminotransferase, absent in all other tyrosine aminotransferases characterized so far. Since the parasite's genome contains a high number of copies of the tyrosine aminotransferase gene, we could not rule out the possibility that two very similar proteins, with changed specificity due to a few amino acid substitutions, might be responsible for the two activities. We have now expressed in Escherichia coli a recombinant tyrosine aminotransferase as a fusion protein with glutathione S-trans-ferase. The purified fusion protein, intact or after thrombin cleavage, displays tyrosine aminotransferase and alanine aminotransferase activities with apparent K m values similar to those for the natural enzyme, thus proving that they belong to the same protein.  相似文献   

16.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The uptake, metabolism, and action of cAMP, captured within phospholipid vesicles, in H-35 hepatoma cells were studied. Sonication of lipids in buffer containing cAMP resulted in the formation of 300-A unilamellar lipid vesicles, capturing cAMP in the internal aqueous cavity. Incubation of H-35 hepatoma cells with vesicles containing cAMP (vesicle-cAMP) resulted in rapid incorporation of the vesicle content; apparent saturation of uptake was reached after approximately 30 min of incubation at 37 degrees C. Uptake of vesicle-cAMP was linear over a 10- fold vesicle concentration range. Pretreatment of cells with combined inhibitors of glycolysis and respiration inhibited vesicle uptake by 27%, suggesting vesicle fusion with the cell membrane as a predominant pathway of vesicle uptake. Studies on the metabolism of incorporated cAMP indicated that greater than 50% of the cell-associated radioactivity, derived from vesicle-[3H]cAMP, was preserved as cAMP at the end of a 20-min incubation at 37 degrees C. The incorporation of vesicle-cAMP by H-35 hepatoma cells resulted in increased tyrosine aminotransferase (TAT) activity. The concentration of vesicle-cAMP needed to produce a half-maximal increase in TAT activity was 10 microM, approximately two orders of magnitude lower than that of exogenously added dbcAMP. cAMP was ineffective when added extracellularly. The kinetic relationship of the cAMP-induced increase in TAT activity and the binding of cAMP to its receptor protein, in intact H-35 cells, was examined using vesicle-trapped 8-N3-cAMP, a photoaffinity labeling analogue of cAMP. Incubation of H-35 hepatoma cells with vesicle-8-N3-cAMP resulted in increased TAT activity, preceded by the binding of 8-N3-cAMP to the regulatory subunit of type II cAMP-dependent protein kinase. The use of lipid vesicles provides a means of modulating intracellular cAMP concentration without adding cyclic nucleotide in the millimolar concentration range to the extracellular medium. The increased efficiency of intracellular delivery of cyclic nucleotide with retention of biological activity, provides a useful technique in examining the relationship of occupancy of specific cAMP-receptor protein(s) and the occurrence of a cAMP- mediated biological response in intact cells.  相似文献   

18.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

19.
The activity of the αβ form of Rous sarcoma virus RNA-dependent DNA polymerase was stimulated upon treatment with the protein kinase purified from the same virus. This enhancement was observed for both DNA-dependent and RNA-dependent DNA polymerase activities, whereas the RNase H activity associated with the polymerase was not affected. On the other hand, the protein kinase did not induce detectable changes in the activities of the α-polymerase isoenzyme. Treatment with Escherichia coli alkaline phosphatase resulted in a reduction of the polymerase activities of the αβ isoenzyme with no effects on RNase H as well as on the α form of the DNA polymerase. Preincubations of the αβ- and α-oncornaviral polymerase isoenzymes with two other protein kinases—from avian myeloblastosis virus and from beef heart (catalytic subunit)—had no substantial effects on DNA polymerase and RNase H activities of both polymerase isoenzymes. Both α and β subunits of the polymerase isoenzymes were phosphorylated in vitro by all three protein kinases employed, although only the β subunit was shown previously to be phosphorylated in vivo.  相似文献   

20.
A soluble casein kinase isolated and purified to homogeneity from the human erythrocyte cytosol by phosphocellulose and Sephadex G-200 chromatographies is indistinguishable from the membrane-bound casein (spectrin) kinase according to physical and site-specificity criteria. The soluble enzyme shows an Mr of about 30000 by gel filtration and comigrates with the purified membrane spectrin kinase as a single polypeptide of 32000 Da on sodium dodecyl sulfate polyacrylamide gels. The soluble kinase phosphorylates spectrin in situ in spectrin kinase-depleted ghosts and catalyzes the in vitro phosphorylation of partially dephosphorylated spectrin with saturation kinetics identical to those displayed by the membrane spectrin kinase. When component 2 of spectrin that had been phosphorylated with [gamma-32P]ATP by either the soluble or the membrane kinases was subjected to limited proteolysis, the same 21500 Da papain-generated phosphopeptide was found to have been produced by the two enzymes. The same 21500 Da phosphopeptide was identified after papain digestion of spectrin isolated from intact cells that had been incubated with 32Pi. However, this particular peptide was not labeled in spectrin that had been phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. Identical phosphopeptide patterns were obtained by gel filtration and two-dimensional peptide maps of trypsin-cleaved component 2 of spectrin that had been labeled in situ, in intact ghosts or in spectrin kinase-depleted ghosts supplemented with the soluble kinase. These findings indicate a possible identity of the soluble with the membrane-bound casein (spectrin) kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号