首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Premise of the study: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • Methods: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • Key results: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • Conclusions: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.  相似文献   

2.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

3.
Haploid, diploid and tetraploid lines ofBrassica rapaL. (syn.campestris),and allotetraploidB. napusL., were examined to determine theinfluence of ploidy on floral features, particularly nectarymorphology and anatomy, and to relate nectary structure to nectarproduction capacity. Except for haploids, all lines were rapid-cycling.Average flower dry weight, and petal length and width, werein the descending orderB. napus>B. rapa (4n) >2n>n.Pollen grains of 4nplants were larger than those of 2nplants;haploids lacked pollen. All lines developed nectaries. Typically, each flower producedtwo pairs of nectaries, of different types and nectar productioncapacity. Normally, each lateral gland was located above thebase of a short stamen, and together this pair yielded mostof a flower 's nectar carbohydrate. Each median nectary aroseat the outer junction of the bases of two adjacent long stamens.All lateral nectaries received a vascular supply of phloem alone,but median glands received reduced amounts of phloem, or lackedvasculature altogether. Most nectaries were solitary, but 14%of all flowers, and especially those of 2n B. rapa,had at leastone median and lateral gland connected. Obvious variation existed in nectary morphology between ploidylevels, between flowers of the same plant, and even within flowers.Ten forms of each nectary type were recognized. Plants producingthe most nectar carbohydrate had high frequencies of lateralnectaries which were symmetrical, unfurrowed swellings. TetraploidsofB. rapahad both the highest frequencies of furrowed lateralglands, and of isolated segments of nectarial tissue at thatposition. Even these separated nectarial outgrowths receivedphloem and produced a nectar droplet. At the median location,nectaries were commonly of two forms: peg- or fan-shaped. Lobeson median nectaries, up to four per nectary, were detected inalmost half of glands of 4nflowers examined; lobes were absentin haploids. Brassica rapa; Brassica napus; flower size; nectar production; nectary variability; petal size; ploidyphloem; pollen; rapeseed  相似文献   

4.
Background and Aims Despite the number of orchid speciesthat are thought to be pollinated by hummingbirds, our knowledgeof the nectaries of these orchids is based solely on a singlespecies, Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge.Nevertheless, it is predicted that such nectaries are likelyto be very diverse and the purpose of this paper is to comparethe nectary and the process of nectar secretion in Hexisea imbricata(Lindl.) Rchb.f. with that of Maxillaria coccinea so as to beginto characterize the nectaries of presumed ornithophilous Neotropicalorchids. • Methods Light microscopy, transmission electronmicroscopyand histochemistry were used to examine the histology and chemicalcomposition of nectary tissue and the process of nectar secretionin H. imbricata. • Key Results and Conclusions The nectary of H. imbricatahas a vascular supply, is bound by a single-layered epidermiswith few stomata and comprises two or three layers of subepidermalsecretory cells beneath which lie several layers of palisade-likeparenchymatous cells, some of which contain raphides or mucilage.The secretory cells are collenchymatous and their walls havenumerous pits with associated plasmodesmata. They contain thefull complement of organelles characteristic of secretory cellsas well as intravacuolar protein bodies but some of the secretoryepidermal cells, following secretion, collapse and their anticlinalwalls seem to fold. Nectar secretion is thought to be granulocrineand, following starch depletion, lipid droplets collect withinthe plastids. The nectar accumulates beneath the cuticle whichsubsequently forms swellings. Finally, nectar collects in thesaccate nectary spur formed by the fusion of the margins ofthe labellum and the base of the column-foot. Thus, althoughthe nectary of H. imbricata and M. coccinea have many featuresin common, they nevertheless display a number of important differences.  相似文献   

5.
Nectar is secreted for up to 11d after anthesis inChamelauciumuncinatum . The volume and sucrose concentration secreted variesbetween flowers, plants and days. The period of nectar secretioncoincides with the period of pollen presentation and stigmaticreceptivity suggesting nectar is part of an efficient reproductivestrategy inC. uncinatum . The nectary ofC. uncinatum consistsof the entire upper surface of the ovary and hypanthium. Theepidermis of the nectary is covered by a thickened cuticle whichis only broken at the sites of the numerous modified stomatawhich are scattered across its surface. It is suggested thatnectar is secreted onto the surface of the ovary via these modifiedstomata. The presence of extensive and well developed endoplasmicreticulum, mitochondria and Golgi bodies in the nectar secretingcells indicates that a granulocrine mechanism of secretion isoccurring inC. uncinatum . Chamelaucium uncinatum ; Geraldton Waxflower; floral nectaries; nectar production; modified stomata  相似文献   

6.
Reuyen Dukas 《Oecologia》1987,74(2):256-263
Summary The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.  相似文献   

7.
Background and Aims Macaranga: (Euphorbiaceae) is a large genus of dioecious trees with approx.260 species. To date, only one pollination study of the genushas reported brood-site pollination by thrips in M. hullettii.In this study, the pollination system of Macaranga tanariusis reported. Methods: The study was conducted on Okinawa and Amami Islands, Japan.Flower visitors on M. tanarius were collected and their pollenload and behaviour on the flowers examined, as well as inflorescencestructure and reward for the pollinators. Key Results: The most abundant flower visitors found on the male and femaleinflorescences were Orius atratus (Anthocoridae, Hemiptera),followed by Decomioides schneirlai (Miridae, Hemiptera). Pollenload on O. atratus from flowering pistillate inflorescenceswas detected as well as from staminate flowers. Orius atratusand D. schneirlai are likely to use the enclosed chambers formedby floral bracts as breeding sites before and during floweranthesis, and feed on nectar on the adaxial surface of flowerbracts. The extrafloral nectary has a ball-shaped structureand the contained nectar is not exposed; the hemipterans piercethe ball to suck out the nectar. Conclusions: The results indicate that the plant is pollinated by flowerbugs breeding on the inflorescences. This study may be the firstreport of pollination systems in which flower bugs are the mainpollinators. Similarity of pollination systems between M. hullettiiand M. tanarius indicates that the two brood-site pollinationsystems have the same origin. The pollinator species belongsto a predacious group, whose major prey includes thrips. Thepollination system might represent a unique example of evolutionfrom predatory flower visitors feeding on the pollinators (thrips)to the main pollinators.  相似文献   

8.
Floral nectaries have contributed to the systematics of different taxonomic groups. Since those of the neotropical genera included in subfamily Salacioideae—Cheiloclinium Miers, Peritassa Miers, Salacia L. and Tontelea Aubl.—have different forms and positions, we explored their anatomy to delimit more precisely the genera of subfamily Salacioideae. Buds and open flowers of six species were treated following the usual techniques in plant anatomy. The obtained data were helpful in characterizing the floral nectary anatomy of the studied species. Furthermore, some features such as form, position and surface of nectaries; form of their epidermal cells; presence and distribution of stomata; occurrence of idioblasts containing druses in the nectariferous parenchyma; and absence of nectary vascularization can contribute to the taxonomy and phylogeny of the Salacioideae studied. In most of the studied species the nectar is probably released by both the stomata and the nectary epidermal surface. In Cheiloclinium cognatum, the structure acknowledged as nectary is actually a vestigial tissue and the functions of attracting and rewarding pollinators has phylogenetically migrated to the stigmatic region. The druses and phenolic substances observed in the nectariferous parenchyma probably help defend flowers against herbivore attacks. The minute size of the nectaries of Salacioideae may explain the absence of vascularization. The floral nectaries of Salacia elliptica are epithelial while those of the other species are mesenchymal.  相似文献   

9.
Ultrastructure, Development and Secretion in the Nectary of Banana Flowers   总被引:3,自引:1,他引:2  
The nectaries of Musa paradisiaca L. var. sapientum Kuntze werefound to secrete in addition to the sugar solution, a polysaccharidemucilage and a very electron dense, homogenous material whichwas apparently protein. The polysaccharide had already startedto appear outside the epithelial cells of the nectary at veryearly stages of nectary development. At somewhat later developmentalstages the very dense homogenous material appeared in the formof droplets between the plasmalemma and cell wall in massesin the nectary lumen. Nectar secretion started in flowers whenthe bract in the axil of which they occurred had just recoiled.The ER elements were dilated and formed vesicles and the Golgibodies were very active, at the stage of the nectar secretionand at stages preceding it, except at the stage just beforesecretion. In all stages of nectary development the dilatedER elements and most large Golgi vesicles contained fibrillarmaterial. It is suggested that both ER and the Golgi apparatusare involved in the secretion of the sugar solution and of thepolysaccharides. There was not enough evidence as to where inthe cell the very dense homogenous material is synthesized. A few developmental stages of the nectaries of the male flowersof the Dwarf Cavendish banana, which do not secrete nectar,were also studied. It was seen that at early stages of development,the ultra-structure of the nectary of this banana variety wassimilar to that of M. paradisiaca var. sapientum. However, theepithelial nectary cells of the Dwarf Cavendish banana disintegratedbefore maturation of the nectary. Musa paradisiaca L, banana, floral nectaries, ultrastructure  相似文献   

10.
There are few anatomical studies of the reproductive organs of Swietenia macrophylla, despite its economic importance. This study aims to describe the structural and ultrastructural organization of the petaline nectaries in mahogany flowers. Flower buds and flowers at anthesis were collected, fixed, and processed for studies under light and electron microscopy. Nectaries occur in the median region of the petal, on the abaxial surface. Nectar is produced at all stages, from the very young buds until anthesis. The nectary presents a uniseriate epidermis, without stomata; intercellular spaces among the epidermal cells are frequent and contiguous to the subcuticular space. The secretory tissue consists of two to five layers of cells, which are rich in organelles. The nectaries lack vasculature, and the secretory tissue is isolated from the petaline mesophyll by an endodermoid layer. In the staminate flowers, the number of nectaries is less than that observed in pistillate ones.  相似文献   

11.
The levels of endogenous IAA and the production of ethylenehave been followed during maturation and senescence in herbaceous(Phaseolus vulgaris, Ecballium elaterium) and deciduous (Prunusserrulata) leaves. Comparisons have been made with similar estimationsduring ripening of a herbaceous fruit. Ecballium elaterium.Whereas a correlation can be made between auxin content andethylene production in immature tissues, no such relationshipexists in senescing or ripening tissues where ethylene productionappears to be independent of the total endogenous auxin content.Both IAA and fusicoccin enhance ethylene production in developingleaves but fail to do so in senescent tissues. A mechanism forthe regulation of the rate of ethylene biosynthesis is described.This involves modifications in the release from a membrane-boundor membrane-enclosed compartment of cofactor(s) essential toone or more steps in the pathway. The mechanism accommodatesobserved normal and senescence-related rates of ethylene production.  相似文献   

12.
Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae)   总被引:1,自引:0,他引:1  
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators.  相似文献   

13.
We studied the relationship between the diurnal nectar secretion pattern of flowers of Cayratia japonica and insect visiting patterns to these flowers. Flower morphology of C. japonica changed greatly for about 12 hours after flower-opening and the maximum duration of nectar secretion was 2 days. The nectar volume peaked at 11∶00 and 15∶00, and declined at night and at 13∶00 regardless of time elapsed after flower-opening. The nectar volume at the two peaks was, on average, 0.25 μl on bagged inflorescences and 0.1μl on unbagged inflorescences (both, sugar concentration=60%). The flower secreted nectar compensatory when the nectar was removed. This means that insects consume more nectar than the difference of nectar volume between bagged and unbagged flowers. Apis cerana is a primary visitor of this flower, and was the only species for which we confirmed pollen on the body, among many species of flower visiting insects to this flower. Apis cerana visited intensively at the two peaks of nectar secretion. Visits of the other insects were rather constant or intensive only when there was no nectar secretion. Thus flowers of C. japonica with morphologically unprotected nectaries may increase likelihood that their nectar is used by certain pollinators, by controlling the nectar secretion time in day. In this study the pattern of nectar secretion allowed A. cerana maximum harvest of nectar.  相似文献   

14.
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae.  相似文献   

15.
Cucurbita pepo carries male and female flowers on the same plant,and is pollinated by nectar-collecting bees. The nectaries aredimorphic in the two sexes and pollen is loaded and unloadedas the bees gain access to the nectar. Both types of flowerare open for only 6 h (from 0600 h to 1200 h); male flowersopen and close half an hour earlier than female flowers. Thelatter produce more nectar and are visited more often by thebees than the male flowers. Pollen viability determined by fluoresceindiacetate (fluorochromatic reaction) decreases by 20% duringanthesis and more rapidly after the flower closes. This decreaseis due to dehydration of the grain, especially around the porewhere the intine is exposed. An unusual feature of this speciesis that the grains do not dehydrate before anther dehiscence.Female receptivity has two aspects, that of the stigma lasting4 d, and that of the ovules lasting 2 d. The receptivity ofthe two sexes and the short period of anthesis are discussedin the light of the reproductive ecology of the species.Copyright1993, 1999 Academic Press Entomophilous pollination, anthesis, nectars, pollen viability, female receptivity, bees, pollinator efficiency, courgette Cucurbita pepo, Cucurbitaceae  相似文献   

16.
Nectar-carbohydrate production and composition were investigated by high-performance liquid chromatography and enzymology in nine species from five tribes of the Brassicaceae. In six species (Arabidopsis thaliana (L.) Heynh., Brassica napus L., B. rapa L., Lobularia maritima (L.) Desv., Raphanus sativus L., Sinapis arvensis L.) that produced nectar from both lateral nectaries (associated with the short stamens) and median nectaries (outside the long stamens), on average 95% of the total nectar carbohydrate was collected from the lateral ones. Nectar from these glands possessed a higher glucose/fructose ratio (usually 1.0–1.2) than that from the median nectaries (0.2–0.9) within the same flower. Comparatively little sucrose was detected in any nectar samples except from Matthiola bicornus (Sibth. et Sm.) DC., which possessed lateral nectaries only and produced a sucrose-dominant exudate. The anatomy of the nectarial tissue in nectar-secreting flowers of six species, Hesperis matronalis L., L. maritima, M. bicornus, R. sativus, S. arvensis, and Sisymbrium loeselii L., was studied by light and scanning-electron microscopy. Phloem alone supplied the nectaries. However, in accordance with their overall nectar-carbohydrate production, the lateral glands received relatively rich quantities of phloem that penetrated far into the glandular tissue, whereas median glands were supplied with phloem that often barely innervated them. All nectarial tissue possessed modified stomata (with the exception of the median glands of S. loeselii, which did not produce nectar); further evidence was gathered to indicate that these structures do not regulate nectar flow by guard-cell movements. The numbers of modified stomata per gland showed no relation to nectar-carbohydrate production. Taken together, the data on nectar biochemistry and nectary anatomy indicate the existence of two distinct nectary types in those Brassicacean species that possess both lateral and median nectaries, regardless of whether nectarial tissue is united around the entire receptacle or not. It is proposed that the term “nectarium” be used to represent collectively the multiple nectaries that can be found in individual flowers. Received: 21 July 1997 / Accepted: 19 September 1997  相似文献   

17.

Background and Aims

Most neotropical Melastomataceae have bee-pollinated flowers with poricidal anthers. However, nectar rewards are known to be produced in about 80 species in eight genera from four different tribes. These nectar-producing species are pollinated by both vertebrates and invertebrates.

Methods

The floral morphology and anatomy of 14 species was studied in six genera of nectar-producing Melastomataceae (Blakea, Brachyotum, Charianthus, Huilaea, Meriania and Miconia). Anatomical methods included scanning electron microscopy, and serial sections of paraffin-embedded flowers.

Key Results

All vertebrate-pollinated melastome flowers have petals that do not open completely at anthesis, thus forming a pseudo-tubular corolla, while closely related species that are bee pollinated have rotate or reflexed corollas. In most species, nectar secretion is related to stomatal or epidermal nectaries and not filament slits as previously reported. Moreover, the nectar is probably supplied by large vascular bundles near the release area. Blakea and Huilaea have nectary stomata located upon the dorsal anther connective appendages. Brachyotum also has nectary stomata on the anther connectives, but these are distributed lengthwise along most of the connective. Meriania may release nectar through the anther connective, but has additional nectary stomata on the inner walls of the hypanthium. Miconia has nectary stomata on the ovary apex. Charianthus nectaries were not found, but there is circumstantial evidence that nectar release occurs through the epidermis at the apex of the ovary and the lower portions of the inner wall of the hypanthium.

Conclusions

Nectar release in Melastomataceae is apparently related to nectary stomata and not filament slits. The presence of nectary stomata on stamens and on ovary apices in different lineages suggests that the acquisition of nectaries is a derived condition. Nectary location also supports a derived condition, because location is strongly consistent within each genus, but differs between genera.Key words: Blakea, Brachyotum, Charianthus, Huilaea, Meriania, Melastomataceae, Miconia, nectaries, nectary stomata, pollination  相似文献   

18.
Anadenanthera colubrina (Vell.) Brenan (Leguminosae-Mimosoideae) is a widely-distributed tree in seasonally dry tropical forests of South America that was classified previously as lacking nectaries. However, some studies have stated that its flowers produce nectar, while others analyzed the composition of unifloral honey produced from A. colubrina flowers, raising the question about nectar production in the species. We studied the pollination and reproductive biology of A. colubrina var. cebil (Griseb.) Altschul in a natural population in the Caatinga, northeastern Brazil. Reproductive phenology, sexual system, floral biology, resource, and pollinators were investigated. We analyzed the breeding system through controlled pollinations for addressing its dependence on pollen vectors for reproduction. Anadenanthera colubrina flowered in the dry season, flower heads are heteromorphic, with staminate flowers at the base and perfect flowers at the apex of the inflorescence, characterizing andromonoecy. Anthesis is diurnal. We observed small drops of nectar at the apex of the petals of some flowers per inflorescence. Together with observations on flower visitor behavior and histochemical tests, we propose that A. colubrina produces floral nectar at the apex of the corolla, characterizing a substitutive nectary (sensu Vogel). This is the first record of substitutive nectary in the Mimosoideae and the first record of andromonoecy in the genus. Bees were the main pollinators (higher frequency), although other insects such as wasps, butterflies, and small beetles were also observed collecting nectar and/or pollen. The species is self-incompatible, thus depending on insect pollen vectors, mainly bees, for reproduction.  相似文献   

19.
Chwil M  Chwil S 《Protoplasma》2012,249(4):1059-1069
The Polemoniaceae family forms flowers diverse in the terms of pollination methods and nectar types. The micromorphology of the nectary surface and the tissue structures as well as the ultrastructure of the cells of the floral nectaries in Polemonium caeruleum L. were examined using light, scanning and transmission electron microscopy. A bowl-shaped nectary, detached from the ovary, grows at its base. Its contour shows folds with depressions in the places where the stamens grow, forming five-lobed disc (synapomorphic character). Nectar is secreted through modified anomocytic stomata, which are formed in the epidermis covering the tip and the lateral wall of the projection located between the staminal filaments. The undulate nectary consists of a single-layered epidermis and three to nine layers of parenchymal cells. The cells of the nectary contain a dense cytoplasm, numerous plastids with an osmophilic stroma and starch grains, well-developed endoplasmic reticulum, as well as a large number of mitochondria interacting with the Golgi bodies. The ultrastructure of nectary cells indicates the granulocrine secretion mechanism and diversified transport of nectar.  相似文献   

20.
 The dynamics and abundance of nectar secretion as well as sugar productivity were studied in flowers of brown mustard (Brassica juncea) cv. Małopolska and white mustard (Sinapis alba) cv. Borowska. Moreover, floral nectaries were examined under LM and SEM. In both cultivars lateral and median pairs of nectaries secreted nectar. However, differences were found in morphology and activity of these pairs. The lateral nectaries produced more nectar than the median ones. Nectar secretion started at loose bud and peaked during anther dehiscence. Average amount of nectarsecreted by 100 flowers of cv. Małopolska and cv. Borowska were 119.9 mg and 134 mg. Mean concentration of nectar was 26.7% and 23.4%, respectively. One hundred flowers of cv. Małopolska and cv. Borowska secreted 28.4 mg and 24.9 mg of sugars in nectar. Estimated sugar productivity per 1 ha of crop was 65.5 kg and 71.2 kg, respectively. Received August 28, 2002; accepted November 2, 2002 Published online: June 2, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号