首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish skin is very vulnerable to damage from physical and chemical pollutants because it is in direct contact with the aquatic environment. In this study, the effect of gamma radiation on primary cultures of rainbow trout skin was investigated. Primary cultures containing two cell types, epidermal cells and goblet mucous cells, were exposed to doses ranging from 0.5-15 Gy 60Co gamma radiation. Expression of PCNA, c-myc and BCL2 was investigated as well as growth and levels of apoptosis and necrosis. Morphological and functional changes were also studied. The irradiated cultures showed evidence of a dose-dependent increase in necrosis and enhanced proliferation as well as morphological damage. In addition, mucous cell area was found to decrease significantly after irradiation. The study shows the value of these primary cultures as in vitro models for studying radiation effects. They provide an effective alternative to whole-animal exposures for radiation risk assessment.  相似文献   

2.
Ashbya gossypii is a natural overproducer of riboflavin. Overproduction of riboflavin can be induced by environmental stress, e.g. nutritional or oxidative stress. The Yap-protein family has a well-documented role in stress response. Particularly, Yap1 has a major role in directing the oxidative stress responses. The A. gossypii YAP-family consists of only three genes in contrast to its closest relative Eremothecium cymbalariae, which has four YAP-homologs. Gene order at Eremothecium YAP-loci is conserved with the reconstructed yeast ancestor. AgYap1p is unique amongst Yap-homologs as it lacks the cysteine-rich domains (CRDs). AgYAP1 expression is inducible and GFP-AgYap1 localizes to the nucleus. Agyap1 mutants displayed higher sensitivity against oxidative stress - H(2)O(2) and menadione - and are strongly reduced in riboflavin production. High levels of cAMP, which also reduce riboflavin production, show a synergistic effect on this sensitivity. AgYAP1 and a chimera of AgYAP1 (with the DNA-binding domain) and ScYAP1 (with the CRDs) can both complement the Scyap1 oxidative stress sensitivity. This suggests that the DNA-binding sites of ScYap1 are conserved in A. gossypii. Expression of AgRIB4, which contains three putative Yap1-binding sites, assayed via a lacZ-reporter gene was strongly reduced in an Agyap1 mutant suggesting a direct involvement of AgYap1 in riboflavin production. Furthermore, our data show that application of H(2)O(2) stress leads to an increase in riboflavin production in a Yap1-dependent manner.  相似文献   

3.
4.
L Ghisolfi  AC Keates  X Hu  DK Lee  CJ Li 《PloS one》2012,7(8):e43628
The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.  相似文献   

5.
6.
Ionizing radiation induces intestinal epithelial hyporesponsiveness to secretagogues through an unknown mechanism. We investigated the role of the inducible isoform of nitric oxide (NO) synthase (iNOS)-derived NO in radiation-induced hyporesponsiveness. C57BL/6 mice were sham treated or exposed to 10-Gy gamma-radiation and were studied 3 days later. Tissues were mounted in Ussing-type diffusion chambers to assess chloride secretion in response to electrical field stimulation (EFS) and forskolin (10 microM). Transport studies were also repeated in iNOS-deficient mice. White blood cell counts were significantly lower in irradiated mice, and there was no inflammatory response as shown by myeloperoxidase activity and histological assessment. iNOS mRNA levels and nitrate/nitrite concentrations were significantly elevated in irradiated colons. iNOS immunoreactivity localized to the epithelium. Colons from irradiated wild-type, but not iNOS-deficient, mice exhibited a significant reduction in the responsiveness of the tissue to EFS and forskolin. The hyporesponsiveness was reversed by L-N(6)-(1-iminoethyl)lysine, 1400W, and dexamethasone treatments. iNOS-derived NO mediates colonic hyporesponsiveness 3 days after irradiation in the mouse in the absence of an inflammatory response.  相似文献   

7.
Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP(+/-) colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.  相似文献   

8.
G C Teskey  M Kavaliers 《Life sciences》1984,35(15):1547-1552
The effects of exposure to ionizing radiation on the nociceptive thresholds of CF-1 mice were examined. Significant increases in thermal response latencies, indicative of analgesia were observed after exposure to either high or low doses of radiation. However, the onset of analgesia occurred significantly more rapidly after treatment with the high doses. Administration of the opiate antagonist, naloxone, blocked and reversed the analgesic effects of both the high and low dose of radiation. These findings support the hypothesis that exposure to ionizing radiation results in opioid-mediated analgesia.  相似文献   

9.
Adult cardiac myocytes express intercellular adhesion molecule (ICAM)-1 in response to cytokine stimulation. This allows stable adhesion of chemotactically stimulated but not unstimulated neutrophils. In the current study, we demonstrated that brief exposure of ICAM-1-expressing cardiac myocytes to H(2)O(2) promoted transient adhesive interactions between myocytes and neutrophils without added chemotactic factors. This transient adhesion differed in two ways from the stable adhesion promoted by exogenous chemotactic factors. It occurred more rapidly, peaking within 15 min, and it was dependent on leukocyte function-associated antigen (LFA)-1 (CD11a/CD18) on the neutrophil interacting with ICAM-1 on the myocyte. In contrast, chemotactic factor-induced adhesion peaked at 60 min and was dependent on Mac-1 (CD11b/CD18). The transient adhesion could be completely inhibited by platelet-activating factor (PAF)-receptor antagonists WEB-2086 and SDZ-64-412. These results indicate that canine neutrophils may utilize both LFA-1 and Mac-1 to adhere to adult cardiac myocytes, with LFA-1 triggered by a PAF-like activity induced in myocytes by H(2)O(2).  相似文献   

10.
Daily variation in the absorption, metabolism and excretion of toxic substances will ultimately determine the actual concentration to which the cells and tissues are exposed. In aquaculture, Atlantic salmon (Salmo salar) can be frequently exposed to hydrogen peroxide (H2O2) to treat topical skin and gill infections, particularly in relation to parasitic infections (e.g. sea lice Lepeophtheirus salmonis and amoebic gill disease caused by Neoparamoeba perurans). It is well accepted that the time of administration influences pharmacodynamics and pharmacokinetics of drugs which in turn affects their efficacy and toxicity. Consequently, a better understanding of drug side effects as a function of time of day exposure would help to improve treatment efficacy and fish welfare. To this end, salmon were exposed to H2O2 (1500 mg/L) for 20 min at six different times of the day during a 24-h cycle and we investigated the time-dependent effects of exposure on physiological stress (glucose, lactate and cortisol) and antioxidant enzyme expression (gpx1, cat, Mn-sod and hsp70) in liver and gills. In addition, at each sampling point, 8 control fish were also sampled. Our results revealed that the time of administration of H2O2 caused significant differences in the induction of both physiological and oxidative stress responses. Glucose and lactate were higher in the treated fish during daytime whereas cortisol levels appeared to be systematically increased (>1000 ng/mL) after H2O2 treatment irrespective of exposure time, although differences with control levels were higher during the day. In liver, gene expression of antioxidant enzymes displayed daily rhythmicity in both treated and control groups and showed higher mRNA expression levels in salmon treated with H2O2 at ZT6 (6 h after lights onset). In gills, rhythmic expression was only found for gpx1 in the control fish and for hsp70 and Mn-sod in the treated groups. However, in the treated salmon, higher gene expression levels of all the investigated enzymes were also observed at ZT6-10. Clock gene expression showed rhythmicity only in the liver in accordance with the daily rhythm of enzyme expression observed in this tissue. Altogether, this study provides first evidence of chronotoxicity in Atlantic salmon treated with H2O2 and suggests increased sublethal toxic effect during the first half of the day. These results have direct relevance to the salmon and broader aquaculture industry by optimising the timing of treatment administration, opening the door to chronotherapy to treat fish diseases.  相似文献   

11.
Exponential phase cells of the yeast, Saccharomyces cerevisiae when treated with a non-lethal concentration of hydrogen peroxide (H2O2; 0.2mM) for 60 min adapted to become resistant to the lethal effects of a higher dose of H2O2 (2mM). From studies using cycloheximide to inhibit protein synthesis it appears that protein synthesis is required for maximal induction of resistance but that some degree of protection from the lethal effects of peroxide can be acquired in the absence of protein synthesis. Treatment of cells with 50 micrograms cycloheximide ml-1 alone lead to them acquiring some protection from peroxide. Cells subjected to heat shock became more resistant to 2mM-H2O2; however, peroxide pretreatment did not confer thermotolerance. L-[35S]Methionine labelling of cells subjected to 0.2 mM-H2O2 stress showed that synthesis of at least ten polypeptides was induced by peroxide treatment. Some of these were also induced in cells subjected to heat shock (23 to 37 degrees C shift) but the synthesis of at least four polypeptides (45, 39.5, 38 and 24 kDa) was unique to peroxide-stressed cells. Resistance to peroxide was also inducible in an isogenic petite and an isogenic strain with a mutation in the HAP1 gene, indicating that the adaptive response does not require functional mitochondria.  相似文献   

12.
Recently, we have shown that phenyl hydroquinone, a hepatic metabolite of the Ames test-negative carcinogen o-phenylphenol, efficiently induced aneuploidy in Saccharomyces cerevisiae. We further found that phenyl hydroquinone arrested the cell cycle at G(1) and G(2)/M. In this study, we demonstrate that phenyl hydroquinone can arrest the cell cycle at the G(2)/M transition as a result of stabilization of Swe1 (a Wee1 homolog), probably leading to inactivation of Cdc28 (a Cdk1/Cdc2 homolog). Furthermore, Hog1 (a p38 MAPK homolog) was robustly phosphorylated by phenyl hydroquinone, which can stabilize Swe1. On the other hand, Chk1 and Rad53 were not phosphorylated by phenyl hydroquinone, indicating that the Mec1/Tel1 DNA-damage checkpoint was not functional. Mutations of swe1 and hog1 abolished phenyl hydroquinone-induced arrest at the G(2)/M transition and the cells became resistant to phenyl hydroquinone lethality and aneuploidy development. These data suggest that a phenyl hydroquinone-induced G(2)/M transition checkpoint that is activated by the Hog1-Swe1 pathway plays a role in the development of aneuploidy.  相似文献   

13.
14.
15.
Irradiation of whole blood with 137Cs gamma rays intensifies the oxidative burst. Oxidant production was used as an indicator of inflammatory cell reactions and was measured by luminol-amplified chemiluminescence after treatment with inflammatory activators including bacteria, the neutrophil taxin formyl-Met-Leu-Phe, the Ca2+ ionophore A23187, the detergent saponin, and the tumor promoter phorbol ester. The irradiation response is dose-dependent up to about 100 microGy, is detectable within minutes, persists at least 1 h, and is transmitted intercellularly by a soluble mediator. The response is completely inhibited by Ca2+ sequestration in the presence of A23187 or by adenosine, indicating its Ca2+ dependency, and by the phospholipase A2 blocker p-bromphenacyl bromide. However, inhibition by the cyclooxygenase blocker aspirin is sporadic or absent. Blood taken after diagnostic examination of lungs with X rays also exhibited intensified chemiluminescence. These reactions implicate a role for specific amplifying mediator pathways, especially metabolites of the arachidonic acid cascade, in the response: "damage and repair" to cells or DNA plays little or no role. Our results provide evidence for a new mechanism of radiation action with possible consequences for the homeostasis of reactions involving inflammation and second messengers in human health and early development.  相似文献   

16.
Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.  相似文献   

17.
18.
19.
20.
Previous animal models of heat stress have been compromised by methodologies, such as restraint and anesthesia, that have confounded our understanding of the core temperature (T(c)) responses elicited by heat stress. Using biotelemetry, we developed a heat stress model to examine T(c) responses in conscious, unrestrained C57BL/6J male mice. Before heat stress, mice were acclimated for >4 wk to an ambient temperature (T(a)) of 25 degrees C. Mice were exposed to T(a) of 39.5 +/- 0.2 degrees C, in the absence of food and water, until they reached maximum T(c) of 42.4 (n = 11), 42.7 (n = 12), or 43.0 degrees C (n = 11), defined as mild, moderate, and extreme heat stress, respectively. Heat stress induced an approximately 13% body weight loss that did not differ by final group T(c); however, survival rate was affected by final T(c) (100% at 42.4 degrees C, 92% at 42.7 degrees C, and 46% at 43 degrees C). Hypothermia (T(c) < 34.5 degrees C) developed after heat stress, with the depth and duration of hypothermia significantly enhanced in the moderate and extreme compared with the mild group. Regardless of heat stress severity, every mouse that transitioned out of hypothermia (survivors only) developed a virtually identical elevation in T(c) the next day, but not night, compared with nonheated controls. To test the effect of the recovery T(a), a group of mice (n = 5) were acclimated for >4 wk and recovered at T(a) of 30 degrees C after moderate heat stress. Recovery at 30 degrees C resulted in 0% survival within approximately 2 h after cessation of heat stress. Using biotelemetry to monitor T(c) in the unrestrained mouse, we show that recovery from acute heat stress is associated with prolonged hypothermia followed by an elevation in daytime T(c) that is dependent on T(a). These thermoregulatory responses to heat stress are key biomarkers that may provide insight into heat stroke pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号