首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of Fruiting on Leaf Gas Exchange in Olive (Olea Europaea L.)   总被引:1,自引:0,他引:1  
The effect on traits of photosynthesis and water relations of assimilate demand was studied in olive tree that has strong alternate bearing. The diurnal and seasonal leaf gas exchanges, area dry mass, and saccharide and chlorophyll (Chl) contents were measured by comparing shoots with fruit of "on-trees" (heavy fruit load) with shoots without fruit on both "on-trees" and "off-trees" (light fruit load). In spite of large seasonal and diurnal differences, leaf net photosynthetic rate (P N), stomatal conductance (g s), sub-stomatal CO2 concentration (C 1), transpiration rate (E), and respiration rate (R D) were not significantly influenced by fruit load or by the presence or absence of fruit on the shoot. An only exception was at the beginning of July when the one-year-old leaves on shoots with fruit had slightly higher P N and E than leaves on shoots without fruit. Water content, Chl and saccharide contents, and area dry mass of the leaf were not substantially influenced by the presence/absence of fruit on the shoot or fruit load. Hence the sink demand, associated with fruit growth, did not improve leaf photosynthetic efficiency in olive. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
At the grain-filling stage, net photosynthetic rate (P N), stomatal conductance (g s), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, P N in leaf middle region was higher than in its upper region, and leaf basal region had the lowest P N value. The differences in g s and CE were similar. P N, g s, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between P N and CE was much higher than that between P N and g s in both cases, and P N was negatively correlated with intercellular CO2 concentration (C i). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers P N was positively correlated with g s, but negatively correlated with C i. Thus g s is not the determinant of the photosynthetic capacity in rice leaves.The study was supported by the State Key Basic Research and Development Plan (No.G1998010100).  相似文献   

3.
Proietti  P.  Palliotti  A. 《Photosynthetica》1997,33(1):63-69
Leaves of olive cultivars Frantoio and Maurino were irradiated with different irradiances from above, from below, or simultaneously from both directions to determine the contribution of the abaxial and adaxial leaf surfaces to photosynthesis. In both cultivars, irradiation of both sides of the leaf caused increases in net photosynthetic rate (P N) and apparent quantum yield compared to irradiating only one surface with the equal photosynthetic photon flux density (PPFD), but the PPFD needed to saturate P N decreased. At high and medium PPFD the P N determined at irradiating both leaf surfaces was less than the sum obtained at irradiation of only the upper or the lower surface with the same PPFD. At PPFD higher than 1000 μmol m-2 s-1 in cv. Frantoio and 1200 μmol m-2 s-1 in cv. Maurino, P N did not vary. At low PPFD (<200 μmol m-2 s-1), P N at irradiating the adaxial and abaxial leaf surfaces simultaneously was about the sum of the values obtained by irradiating the upper and lower surfaces separately. Consequently the compensation irradiance was reduced from about 50 μmol m-2 s-1 to about 30 μmol m-2 s-1 when irradiating both leaf surfaces. The natural leaf orientation of the olive cultivar influenced the utilization of radiant energy by the abaxial surface. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
Leaf gas exchange, plant growth and leaf ion content were measured in wheat (Triticum durum L. cv. HD 4502) exposed to steady- state salinities (1.6, 12.0 and 16.0 dS nr−1) for 8 weeks. Salinity reduced leaf area and number of tillers, and increased Na+ and Cl concentrations in leaves. Leaf- to- leaf gradients of these ions were observed. The oldest leaf contained 6 to 8 times more Na+ and Cl than the flag leaf. Net photosynthetic rate (PN), transpiration rate (E) and stomatal conductance (gS) were the highest in flag leaf, declined in the middle and fully expanded leaves, and were minimum in the oldest leaves. These processes were reduced by salinity with similar leaf- to- leaf gradients. Intercellular CO2 concentrations in the older leaves were higher than in the flag leaf in non-saline plants, and increased similarly with salinity. Leaf age was the major factor in reducing PN, and senescence processes were promoted by salinity.  相似文献   

5.
Direct sowing with non-woven fabric mulch is the new organic rice cultivation system. We studied the effect of topdressing on individual leaf photosynthesis at different position and grain yield in rice plants cultivated by this system. Leaf photosynthetic rate at the different leaf position per plant (P N-LP) of the third and fourth to lower leaves was higher when the topdressing amount was increased. Without topdressing or in no-fertilizers plots, the P N-LP values of lower leaves were very low. The leaf photosynthetic rate per unit leaf area (P N-LA) decreased gradually as the leaf position became lower. Again, the P N-LA values of the top-dressed plots at the lower leaves were higher than that of plots without topdressing or without fertilizers. The lower leaves maintained a higher P N because of a higher rate of nitrogen accumulation due to topdressing. The higher rate of photosynthesis in these leaves resulted in better root activity, which contributed to a better ripening percentage and ultimately higher rice grain yield.  相似文献   

6.
Tognetti  R.  Sebastiani  L.  Vitagliano  C.  Raschi  A.  Minnocci  A. 《Photosynthetica》2001,39(3):403-410
Five-year-old plants of two olive cultivars (Frantoio and Moraiolo) grown in large pots were exposed for 7 to 8 months to ambient (AC) or elevated (EC) CO2 concentration in a free-air CO2 enrichment (FACE) facility. Exposure to EC enhanced net photosynthetic rate (P N) and decreased stomatal conductance, leading to greater instantaneous transpiration efficiency. Stomata density also decreased under EC, while the ratio of intercellular (C i) to atmospheric CO2 concentration and chlorophyll content did not differ, except for the cv. Moraiolo after seven months of exposure to EC. Analysis of the relationship between photosynthesis and C i indicated no significant change in carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase after five months of exposure to EC. Based on estimates derived from the P N-C i relationship, there were no apparent treatment differences in daytime respiration, CO2 compensation concentration, CO2-saturated photosynthetic rate, or photosynthetic rate at the mean C i, but there was a reduction in stomata limitation to P N at EC. Thus 5-year-old olive trees did not exhibit down regulation of leaf-level photosynthesis in their response to EC, though some indication of adjustment was evident for the cv. Frantoio with respect to the cv. Moraiolo.  相似文献   

7.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

8.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

9.
Variability in leaf gas-exchange traits in thirteen soybean (Glycine max L. Merr) genotypes was assessed in a field experiment conducted at high altitude (1 950 m). Leaf net photosynthetic rate (P N) exhibited a high degree of variability at all the growth stages studied. P N and other gas-exchange parameters exhibited a seasonal pattern that was similar for all the genotypes. P N rate was highest at seed filling stage. P N was positively and significantly associated with aboveground dry matter and seed yield. The area leaf mass (ALM) exhibited a strong positive association with leaf P N, aboveground dry matter, and seed yield. The positive association between ALM, P N, and seed yield suggests that this simple and easy to measure character can be used in breeding programmes as a surrogate for higher photosynthetic efficiency and eventually higher yield.  相似文献   

10.
Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves. Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics.  相似文献   

11.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

12.
A comparison of the effects of a rapidly imposed water deficit with different leaf ages on chlorophyll a fluorescence and gas exchange was performed in maize (Zea mays L.) plants. The relationships between photosynthesis and leaf relative turgidity (RT) and ion leakage were further investigated. Leaf dehydration substantially decreased net photosynthetic rate (A) and stomatal conductance (G s), particularly for older leaves. With dehydration time, F v /F m maintained a relatively stable level for youngest leaves but significantly decreased for the older leaves. The electron transport rate (ETR) sharply decreased with intensifying dehydration and remained at lower levels during continuous dehydration. The photochemical quenching of variable chlorophyll fluorescence (q P) gradually decreased with dehydration intensity for the older leaves but increased for the youngest leaves, whereas dehydration did not affect the nonphotochemical chlorophyll fluorescence quenching (NPQ) for the youngest leaves but remarkably decreased it for the older leaves. The leaf RT was significantly and positively correlated with its F v /F m, ETR, and q P, and the leaf ion leakage was significantly and negatively correlated with F v /F m and NPQ. Our results suggest that the photosynthetic systems of young and old leaves decline at different rates when exposed to rapid dehydration.  相似文献   

13.
Wang  R.Z.  Yuan  Y.Q. 《Photosynthetica》2001,39(2):283-287
The intra- and inter-specific variations in net photosynthetic (P N) and transpiration (E) rates and water use efficiency (WUE) of Puccinellia tenuiflora and Puccinellia chinampoensis leaves were compared. The two species experienced a similar habitat, but differed in leaf area, leaf colour, and nitrogen contents. Leaf P N and E for both reproductive and vegetative shoots of the two species declined with leaf age. P N for reproductive shoots was less than for vegetative shoots, but their E was greater than that of vegetative shoots in the dry season. The average P N and E for reproductive shoots of P. tenuiflora were lower than those of P. chinampoensis, but higher for vegetative shoots.  相似文献   

14.
Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (P N), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with P N and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with P N measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650.  相似文献   

15.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

16.
In the seasonally flooded forest of the Mapire River, a tributary of the Orinoco, seedlings remain totally covered by flood water for over six months. In order to characterize the physiological response to flooding and submergence, seedlings of the tree Pouteria orinocoensis, an important component of the forest vegetation, were subjected experimentally to flooding. Flooding was imposed gradually, the maximum level of flood including submerged and emerged leaves. After 45 d a severe reduction of net photosynthetic rate (P N) and stomatal conductance (g s) was observed in emerged leaves, whereas leaf water potential remained constant. The decrease in P N of emerged leaves was associated to an increase in both relative stomatal and non-stomatal limitations, and the maintenance of the internal/air CO2 concentration (C i/C a) for at least 20 d of flooding. After this time, both P N and g s became almost zero. The decrease in photosynthetic capacity of emerged leaves with flooding was also evidenced by a decrease in carboxylation efficiency; photon-saturated photosynthetic rate, and apparent quantum yield of CO2 fixation. Oxygen evolution rate of submerged leaves measured after three days of treatment was 7 % of the photosynthetic rate of emerged leaves. Submersion determined a chronic photoinhibition of leaves, viewed as a reduction in maximum quantum yield in dark-adapted leaves, whereas the chlorophyll fluorescence analysis of emerged leaves pointed out at the occurrence of dynamic, rather than chronic, photoinhibition. This was evidenced by the absence of photochemical damage, i.e. the maintenance of maximum quantum yield in dark-adapted leaves. Nevertheless, the observed lack of complementarity between photochemical and non-photochemical quenching after 12 d of flooding implies that the capacity for photochemical quenching decreased in a non-co-ordinate manner with the increase in non-photochemical quenching.  相似文献   

17.
Net photosynthetic rate (P N) was high in genotypes with ‘C’ genome both in the nucleus and cytoplasm. This may be attributed to the co-ordinated manner of acting of both genome sources. Leaf mass per area (LMA) and chlorophyll content increased with leaf nitrogen (N) content but did not show any correlation with P N. The factors which affected P N had the same effect on photosynthetic nitrogen use efficiency (pNUE). Thus, differential allocation of N to the various components influences plant pNUE which is not significantly affected by genome constitution.  相似文献   

18.
Dixit  Deeksha  Srivastava  N.K.  Sharma  S. 《Photosynthetica》2002,40(1):109-113
Changes in leaf growth, net photosynthetic rate (P N), incorporation pattern of photosynthetically fixed 14CO2 in leaves 1–4 from top, roots, and rhizome, and in essential oil and curcumin contents were studied in turmeric plants grown in nutrient solution at boron (B) concentrations of 0 and 0.5 g m-3. B deficiency resulted in decrease in leaf area, fresh and dry mass, chlorophyll (Chl) content, and P N and total 14CO2 incorporated at all leaf positions, the maximum effect being in young growing leaves. The incorporation of 14CO2 declined with leaf position being maximal in the youngest leaf. B deficiency resulted in reduced accumulation of sugars, amino acids, and organic acids at all leaf positions. Translocation of the metabolites towards rhizome and roots decreased. In rhizome, the amount of amino acids increased but content of organic acids did not show any change, whereas in roots there was decrease in contents of these metabolites as a result of B deficiency. Photoassimilate partitioning to essential oil in leaf and to curcumin in rhizome decreased. Although the curcumin content of rhizome increased due to B deficiency, the overall rhizome yield and curcumin yield decreased. The influence of B deficiency on leaf area, fresh and dry masses, CO2 exchange rate, oil content, and rhizome and curcumin yields can be ascribed to reduced photosynthate formation and translocation.  相似文献   

19.
Khan  N.A. 《Photosynthetica》2004,42(3):477-480
The pattern of activity of 1-aminocyclopropane carboxylic acid synthase (ACS) was similar to photosynthetic and growth traits observed at 30, 45, and 60 d after sowing in mustard (Brassica juncea L.) cultivars Varuna and RH 30 differing in photosynthetic capacity. Higher activity of ACS and therefore ethylene release in Varuna than RH 30 increased stomatal conductance, intercellular CO2 concentration, carboxylation rate (carbonic anhydrase and intrinsic water use efficiency), and thus net photosynthetic rate (P N) and leaf and plant dry masses (DM) at all sampling times. Moreover, Varuna also had larger leaf area which contributed to higher P N and DM. A positive correlation between ACS activity and P N and leaf area was found in both the cultivars. Thus ACS activity may affect P N through ethylene-induced changes on foliar gas exchange and leaf growth.  相似文献   

20.
The influence of different leaf-to-fruit (l-t-f) ratios on leaf net photosynthetic rate (P N) and fruit characteristics in Olea europaea L. cv. Frantoio was evaluated in 2001 and 2002. In both years, at the end of June, at the end of July, and in mid-September (first, second, and third time of treatment, respectively), defoliation or fruit thinning were performed to give l-t-f ratios of 1/1, 3/1, 5/1, and 7/1 (about 5.1, 15.3, 25.6, and 35.8 cm2 of leaf area per fruit, respectively) on girdled and ungirdled peripheral shoots. P N showed substantial seasonal and diurnal variations. In ungirdled shoots, no differences due to the different l-t-f ratios were observed, whereas in girdled shoots P N tended to be lower in shoots with a high l-t-f ratio. In general, the values of leaf transpiration rate (E), stomatal conductance (g s), sub-stomatal CO2 concentration (C i), and dark respiration rate (R D) were associated with those of P N. The starch and reducing sugar contents and area leaf dry mass (ADM) tended to be higher in leaves on girdled shoots with high l-t-f ratio, whereas in ungirdled shoots no differences related to the different l-t-f ratios were observed. The higher saccharide content in the leaves and the lower P N, in the presence of a high C i, observed in girdled shoots with a high l-t-f ratio suggests that the depression in P N in these shoots may be the result of a feedback inhibition of the photosynthetic mechanism that regulates such a process. The l-t-f ratio did not have a substantial effect on fruit drop. In ungirdled shoots, the different l-t-f ratios did not produce significant differences in terms of fruit growth and leaf dry matter and saccharide contents, whereas in girdled shoots fruit growth increased as the l-t-f ratio increased, particularly when treatments were applied at the initial stage of fruit development. The percentage of oil in the pulp, on a dry matter basis, was not substantially influenced by girdling and l-t-f ratio. The abundant availability of assimilates seemed to cause earlier fruit ripening and, at the same time, retard fruit senescence (fruit detachment force). Shoot growth was slightly reduced by girdling. The abundant availability of assimilates, induced by girdling associated with high l-t-f ratio, stimulated flower induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号