共查询到19条相似文献,搜索用时 46 毫秒
1.
为揭示大气湿沉降对胶州湾营养盐的输送通量及其生态效应,分别于2015年6—8月(夏季)、9—11月(秋季)采集胶州湾降水样品,测定了降水中不同形态N、P、Si的浓度。结果表明,降水中不同形态营养盐的浓度变化较大,且均与降水量呈负相关关系,其中NH4-N和NO3-N的浓度较高,溶解有机氮(DON)占溶解态总氮(DTN)含量的25.9%,而NO_2-N,PO_4-P和SiO_3-Si的浓度均很低。溶解无机氮(DIN)、DON、PO_4-P以及SiO_3-Si的湿沉降通量分别为141.7、61.87、0.35 mmol m~(-2)a~(-1)和0.12 mmol m~(-2)a~(-1)。受降水量和营养物质来源制约,各项营养盐湿沉降通量时间变化显著。农业活动导致的无机氮排放构成了胶州湾湿沉降DIN的主要来源。大气湿沉降DIN、DON、PO_4-P和SiO_3-Si分别占胶州湾总输入负荷的9.04%、10.24%、0.57%和0.17%,湿沉降输入的PO_4-P在夏、秋季分别可以支持0.575 mgC m~2d~(-1)和1.42 mg C m~2d~(-1)的新生产力;雨水中DIN/P比值高达1 617,突发性强降雨带来的营养盐输入会加剧表层水体的P限制和Si限制,对胶州湾浮游植物群落结构和粒级结构产生重要影响。大气湿沉降是胶州湾生源要素生物地球化学过程的重要一环,对营养物质收支的贡献及可能引发的生态效应不容忽视。 相似文献
2.
长江口邻近海域营养盐分布特征及其控制过程的初步研究 总被引:36,自引:6,他引:36
利用1997年秋季和1998年春季对长江口邻近海域两个航次的调查结果,对该海域营养盐分布、结构特征以及其主要控制过程进行了探讨.结果表明,该海域的营养盐分布及结构具有明显的季节变化,秋季海水中NO3--N、SiO3^2-.SiSiO3^2-,Si及PO4^3--P,DOP、PP均高于春季,平均含量分别为4.97、11.6、0.44、0.26、0.82μmol·L-1,而春季则是NO2--N、NH4+-N、DON、PN含量高,平均含量分别为0.70、2.26、9.88、7.88μmol·L-·PP(54%)和PO4^3--P(51%)分别为秋季和春季磷的主要形态,两个季节氮结构基本一致,均以DON和PN为主.除春季PO4^3--P外,营养盐受长江冲淡水等陆源输入的影响而呈现近岸含量较高,溶解无机氮秋季以NO3^- -N为主而春季则以NH4^+-N为主,秋季PO4^3- -P同时来源于长江冲淡水和台湾暖流.而春季则主要来源于台湾暖流.显示出春季台湾暖流对调查海区的影响程度大于秋季. 相似文献
3.
于2010年12月—2011年9月,2012年9月—2013年6月按季度采样对长江口北支水域氮、磷营养盐的季度变化规律、形态组成以及环境因子间相互关系进行了分析。结果显示溶解性无机氮存在形态主要是硝酸盐,占90%以上,浓度变化规律为夏秋高于春冬两季;溶解性无机氮、总氮峰值分别为3.99 mg/L及1.70 mg/L,均出现在2011年夏季,该现象与当年洪期长江流域连日降雨有关。长江径流所携带营养盐是导致北支无机氮、总磷浓度变化的主要原因。对理化因子进行相关性分析表明,盐度、pH值是营养盐最主要的限制因子。 相似文献
4.
重庆典型地区大气湿沉降氮的时空变化 总被引:8,自引:1,他引:8
验连续3a采集雨样研究了重庆市郊区和林区大气湿沉降氮的时空变化.结果表明,重庆市近郊区、远郊区和林区3个采样点雨水总氮浓度范围为(3.94±0.50)~(4.56±1.01)mg L-1,平均(4.27±0.73)mg L-1.NH+4-N、NO-3-N和DON占TN百分比例分别为44.9%、27.4%和27.5%.降雨中NH+4-N对氮沉降量的贡献率最大.在时间尺度上,不同季节降雨中氮浓度呈现明显的季节性差异,以冬季最高,依次是夏季、春季和秋季.在空间分布上,近郊区、远郊区和林区的TN平均浓度分别为4.56 mg L-1、4.32 mg L-1和3.94 mg L-1,从近郊区到林区有逐渐降低的趋势.降雨中的NH+4-N、NO-3-N、DON和TN浓度与降雨量无显著相关性.但是,降雨量与氮沉降量呈显著正相关.大气氮湿沉降时空差异与降雨量和氮排放直接相关.重庆市随降雨到达地面的氮沉降量较高,远远超过了水体负荷的临界值,可能对三峡库区的水资源产生不利影响. 相似文献
5.
长江口岛屿沙洲湿地陆向发育过程中表层沉积物氮营养盐的变化 总被引:4,自引:1,他引:4
研究针对长江口岛屿沙洲湿地陆向发育的不同时期表层沉积物中氮营养盐的变化规律,得出:(1)长江口岛屿沙洲湿地陆向发育过程中,表层沉积物环境也在不断变化,氮营养盐含量逐步增加,处在陆向发育前期的白茆沙,全氮含量较低,仅为30 mg/kg,而发育较为成熟的崇明东滩全氮含量较高,达470 mg/kg;同时随着岛屿沙洲湿地陆向发育,表层沉积物全氮分布越来越不均匀;(2)长江口岛屿沙洲湿地随高程梯度,全氮的含量逐步增加,其中芦苇带最高,420 mg/kg,光滩最低,110 mg/kg;这也说明岛屿沙洲陆向发育过程中,表层沉积物全氮含量逐步增加;另外,各形态无机氮含量占其所在高程无机氮的比例相对稳定,其中氨氮最高,59%~60%,亚硝酸盐最低,17%~19%,氨氮是无机氮的主要存在形式. 相似文献
6.
藏东南大气氮湿沉降动态变化——以林芝观测点为例 总被引:12,自引:2,他引:12
利用量雨器和湿沉降收集仪在藏东南通过2a的试验, 研究了该区大气氮素沉降的浓度、沉降量以及季节变化规律.结果表明:藏东南大气氮素湿沉降(无机氮)为1.33~3.05 kg/ (hm2·a),平均值为2.36 kg/ (hm2·a),降水中铵态氮和硝态氮的平均浓度分别为0.36 mg/L和0.10 mg/L ,NH+4-N/ NO-3-N接近4 .各形态氮月均浓度之间差别较大,具有明显的季节性,其中NH+4-N月均浓度动态变化明显,5、6、7月份浓度较高(>0.5 mg/L),NO-3-N 12月份浓度(0.49 mg/L)为全年最高;氮浓度的季节变化,以春冬较高,夏秋季较低,离散程度以春季最大.降水量与各形态氮沉降呈一定幂型负相关,相关系数为0.705,0.641,分别达到0.006 (NH+4-N)和0.019(NO-3-N)的显著水平.氮月沉降以5~6月份最高,占全年的32.3%;氮季沉降以夏季所占比例最高,约占50%,冬季最低(2%~3%). 相似文献
7.
丹江口水库淅川库区大气氮湿沉降特征 总被引:7,自引:1,他引:6
大气氮沉降是除河流输入外水库水体重要的外源氮输入途径。以丹江口水库淅川库区为研究区,于2018年11月至2019年10月在库区周边设置了6个采样点,采集并分析了库区大气氮湿沉降样品,探讨氮湿沉降的时空分布特征以及对水库水体外源氮输入的贡献。研究结果表明,研究区大气氮湿沉降量为24.21 kg hm-2 a-1,其中氨氮占比(47.45%)为最大,有机氮占比(36.34%)次之,硝氮占比(16.21%)最小。硝氮湿沉降量在空间上表现出显著差异性。氨氮、有机氮湿沉降量的季节差异显著,氨氮是以夏季最高,秋季次之,冬季最低,而有机氮是以秋季最高,夏季次之,冬季最低。氨氮、硝氮、有机氮湿沉降量之间存在显著相关性,氨氮、有机氮湿沉降量与降水量之间存在显著相关性。总氮、氨氮湿沉降量分别为1321.98 t/a和627.34 t/a,分别占河流总氮、氨氮入库量的10.82%、34.85%。研究结果可为探索有针对性的库区水体氮污染控制途径提供重要理论基础。 相似文献
8.
杭州稻麦菜轮作地区大气氮湿沉降 总被引:3,自引:1,他引:3
通过雨水中NH+4-N/NO-3-N比率和铵态氮自然丰度值(δ15NH+4)的变化探讨大气氮湿沉降与农作施肥活动的关联性. 2003年6月至2005年7月,采用自行设计定制的雨水收集器在浙江杭州稻-麦-蔬菜轮作地区进行了为期2a的全天候连续雨水采样分析.结果显示,杭州稻-麦-蔬菜轮作地区雨水中NH+4-N/NO-3-N比率和δ15NH+4值呈现相似的季节性变化,雨水中NH+4-N/NO-3-N的峰值出现在6月底~9月上旬,而后逐渐下降,秋冬季(10~11月份)降到最低;来春麦菜集中施肥期(2~3月份),又呈现多个小高峰;5~6月份为单季稻和蔬菜基肥和追肥集中施用期,故而峰值也达4以上;入冬后仅在麦田施肥期出现一个小高峰而后明显下降,大都降到1以下;频繁施肥期雨水中的NH+4-N/NO-3-N比率值是农闲期的2~4倍,显示雨水NH+4-N/NO-3-N比率与农田施肥活动有密切关联与同步性,但与气温无直接关联(R2=0.0129).雨水中δ15NH+4值的变化,与雨水中NH+4-N/NO-3-N比率相似,呈现明显的季节性变化:稻麦生育后期与种前空闲期为正值,麦稻蔬菜集中施肥期转为负值.雨水中NH+4-N/NO-3-N比率与δ15NH+4值对大气湿沉降中氮的来源、形态及地面NH3排放源的强度有一定的表征意义. 相似文献
9.
长白山森林生态系统大气氮素湿沉降通量和组成的季节变化特征 总被引:4,自引:0,他引:4
2009—2010年期间,利用雨量计收集法在长白山森林生态系统定位站开展定位观测,分析降水中氮素浓度,研究了该区域大气氮素湿沉降通量和组成的季节变化特征。结果表明,各形态氮素月均浓度之间差别较大,具有明显的季节性;其降水中浓度主要受降水量和降水频次的影响。全年氮素湿沉降中TN、TIN和TON的沉降量分别为27.64 kg N hm-2a-1、11.05 kg N hm-2a-1和16.59 kg N hm-2a-1,TON为沉降主体,占60.02%;其大气氮沉降量主要由降水量和降水中氮素浓度共同决定。该地区氮湿沉降量已处于我国中等水平,考虑到氮素的干湿沉降比例,本区域的年氮沉降量已接近或超过本区域的营养氮沉降临界负荷,存在一定的环境风险。该地区生长季(5—10月)的氮沉降量(16.59 kg N hm-2a-1)占全年氮沉降量的比例达到73.20%。生长季的氮沉降对于促进植物生长直接生态意义重大,而非生长季的氮沉降对于大量补充次年植物生长初期所需养分的间接生态意义明显。 相似文献
10.
利用雨量器收集降雨样品的方法,研究了帽儿山地区大气氮湿沉降的浓度、沉降量及其动态变化规律。研究结果表明:2011年随降雨输入到该地区的大气氮沉降量为19.16 kg·hm-2,其中,NH+4-N、NO-3-N和溶解有机氮(DON)输入量分别占湿沉降量的52%、26%和22%,NH+4-N/NO-3-N沉降量接近2.0。降雨中NH+4-N对当地大气氮湿沉降输入量的贡献率最大,其平均浓度为1.59 mg·L-1。氮湿沉降浓度存在明显的季节差异,以5和9月氮浓度最高,7月最低。该区NH+4-N、NO-3-N和总氮(TN)湿沉降输入量与降雨量均存在极显著正相关,决定系数分别为0.65、0.63和0.76,而DON输入量与降雨量相关性交差(P>0.05),其决定系数为0.24。 相似文献
11.
甲藻孢囊在长江口海域表层沉积物中的分布 总被引:10,自引:0,他引:10
为了了解长江口海域赤潮爆发潜势,于2002年4月至5月用采泥器采集了位于122°~123.5°E、29°~32°N之间12个站位的表层沉积物,分析沉积物中甲藻孢囊的分布.共分析鉴定出孢囊类型29种,其中自养型11种,异养型18种.每个站位的孢囊种类在10~21之间,孢囊密度为11.7~587孢囊·g-1干泥之间.远岸海域孢囊种类较为丰富,密度也较高.在调查区域内,孢囊密度及种类自西向东、自北向南逐渐增加.亚历山大藻孢囊分布广泛,最高密度为40.4孢囊·g-1干泥,其他赤潮种类的孢囊如链状裸甲藻、多边舌甲藻、锥状斯氏藻、科夫多沟藻和无纹多沟藻等都在长江口海域有分布. 相似文献
12.
长江口赤潮高发区浮游植物与水动力环境因子的分布特征 总被引:19,自引:1,他引:19
报道了2002年春季长江口海域(30°50′~31°50′N,121°50′~123°00′E)的22个大面观察站和一个昼夜连续观察站的水样和网样浮游植物的种类组成、丰度分布与水动力环境因子、营养盐的关系.结果表明,长江口区共有浮游植物5门45属110种.主要赤潮生物优势种为中肋骨条藻(Skeletonema castaturn)和具齿原甲藻(Prorocentrum dentatum)等.浮游植物丰度的昼夜变化白天大于夜间,垂直分布不明显.浮游植物主要生态类型可划分为:沿岸河口低盐半咸水类群、沿岸偏低盐广布性类群、外海高盐暖水性类群等.长江口区浮游植物丰度在1.6×10^3~75.2×10^3个.dm-3.浮游植物的种类组成和丰度分布与长江冲淡水密切相关.在该区域存在三股不同性质的水,即长江河口水、长江冲淡水及外海水(台湾暖流)影响着浮游植物的分布. 相似文献
13.
14.
15.
长江口中华鲟自然保护区底栖动物 总被引:4,自引:2,他引:4
根据2004年5、8、11月和2005年2月在长江口中华鲟自然保护区附近水域(31°19.58′—31°38′N;121°32.08′—122°11.65′E)4个航次的海洋综合调查资料,分析了该水域底栖动物种类组成、数量变动和优势种时空分布以及与中华鲟幼鱼食性的关系。结果表明:调查区共有底栖动物48种,种类组成和优势种均有明显的季节更替,四季皆为优势种的仅纵肋织纹螺(Nassariusvariciferus)和狭颚绒螯蟹(Eriocheirleptognathus)2种;夏季总生物量在四季中最高,春季次之,冬季最低;夏季总栖息密度大于其它3个季节,冬季次之,春季和秋季基本一致;夏季是底栖动物总生物量和总栖息密度较高的时期,也是中华鲟幼鱼在长江口停留觅食时期。与2002年的研究结果进行比较表明,虽然底栖动物优势种组成在深水航道工程后基本稳定,但生物量和栖息密度均呈下降趋势,这直接威胁到保护区内中华鲟幼鱼的饵料基础状况。 相似文献
16.
于2004年4月初,采集长江口(E122°~123°30',N29°~32°)10个站点0~15cm底泥样品,研究甲藻孢囊在这10个站点的水平和垂直分布情况。在30个样品中共鉴定出6大类24种甲藻孢囊。孢囊组成以异养型原多甲藻类孢囊为主,有13种,平均密度为157cysts·g-1DW,为调查海域的最优势种群。两种产麻痹性贝类毒素(Paralytic shellfish poisoning,PSP)的孢囊,塔玛亚历山大藻和链状裸甲藻,在海区分布广泛但数量较低。10个站点甲藻孢囊的种类数在11~18种之间,平均密度为189~846cysts·g-1DW,在远离河口的D6站点有一个明显的最高峰,位于最北部的D1站点孢囊密度最低。与其它海湾相比,属于孢囊密度较低的海区。Shannon-Weaver生物多样性指数(H')变化范围在2.57~3.27之间。甲藻孢囊的密度分布与生物多样性相关系数r=-0.72。3个不同深度的甲藻孢囊密度分别为351cysts·g-1DW、412cysts·g-1DW、432cysts·g-1DW;生物多样性指数分别为3.22、2.95、2.98。 相似文献
17.
长江口附近海域春季浮游硅藻的种类组成和生态分布 总被引:21,自引:2,他引:21
2002年春季,在长江口附近海域典型赤潮高发区28个大面站位采集了53个样品,从中共鉴定出隶属于31个硅藻属的80个种和变种;其中种类多样性较高的属为圆筛藻属(Coscinodiscus),有17个种,斜纹藻属(Pleurosigma),有8个种和变种;数量上较优势的种为柔弱拟菱形藻(pseudo-nitzschia delicatissma),为3.48×10^3cells·L-1,占28.54%;具槽直链藻(Melosira sulcata),为1.43×10^3cells·L-1,占16.98%;尖刺拟菱形藻(Pseudo-nitzschia pungens),为0.71×10^3cells·L-1,占9.85%.它们在大部分站位中都有出现;柔弱拟菱形藻和尖刺拟菱形藻的高细胞密度区主要出现在1230E断面的站位,而具槽直链藻则主要出现在长江口的31~32°N断面的站位.浮游硅藻总细胞丰度变化于0.43×10^3~23.3×10^3cells·L-1,平均4.61×10^3cells·L-1;在123°E、30.5°N的DDl5站位,无论表层还是中层,浮游硅藻总细胞丰度均最高(表层,1.85×10^4cells·L-1;中层,2.33×10^4cells·L-1).从水平分布看,浮游硅藻呈不均匀分布态势,从垂直分布看,大部分站位的表层浮游硅藻丰度高于中层. 相似文献
18.
长江口及邻近海域小型底栖生物丰度和生物量 总被引:29,自引:0,他引:29
“东方红2号”调查船于2003年6月在长江口外(28°N°至32°N,121°E至123°E)陆架浅海水域进行了小型底栖生物的取样。研究表明,小型底栖生物的平均丰度为(1971±583.9)ind10cm-2,平均生物量为(1393±516.1)μgdwt10cm-2,平均生产量为(12543±4644.7)μgdwt10cm-2a-1。共鉴定出21个小型生物类群,其中自由生活海洋线虫为最优势的类群,占小型生物总丰度的91%和总生物量的51%。其他数量上较重要的类群还有底栖桡足类、多毛类、动吻类和双壳类等。相关分析表明,小型底栖生物的数量分布与沉积物叶绿素和脱镁叶绿酸的含量呈高度显著相关。台风前后8号站线虫群落的比较研究表明,台风后线虫群落在丰度,生物量及种类组成上均发生了一定的变化,对台风的响应较为显著。典型站位自由生活海洋线虫种类组成的分析表明,长江入海口向外线虫优势度降低,多样性增加。 相似文献
19.
丰水期长江感潮河口段网采浮游植物的分布与长期变化 总被引:1,自引:0,他引:1
于2009年6、8月对长江口门至江阴的河口段浮游植物进行了拖网采集,共检出浮游植物6门99属239种。其中:硅藻123种,甲藻19种,绿藻和蓝藻各42种,裸藻9种,黄藻4种。河口段网采浮游植物丰度以蓝藻占绝对优势,硅藻次之,两者合计在群落中的比例超过了95%。优势种也主要以蓝藻(水华鱼腥藻Anabaena flos-aquae、柔软腔球藻Coelosphaerium kuetzingiarum、微囊藻Microcystis spp.、颤藻Oscillatoria spp.和席藻Phorimidium spp.)构成,硅藻仅有2种(骨条藻Skeletonema spp.和颗粒直链藻Aulacoseira granulata)。口门内盐度均<0.5,群落基本以淡水类群为主,口门附近则以半咸水类群为主,海水类群主要位于口门外(盐度>13)。随着水温和营养盐水平的升高,8月浮游植物平均丰度(347.75×104 个/m3)明显高于6月(204.19×104 个/m3)。根据多维尺度和相似性分析,丰水期长江河口段浮游植物群落组成与分布存在显著(P<0.01)的时空差异。对比20世纪80年代以来的历史资料发现,长江口门内网采浮游植物丰度显著升高,且优势种也从硅藻(骨条藻、直链藻和圆筛藻)转变为蓝藻(颤藻、鱼腥藻和微囊藻)。 相似文献