首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.  相似文献   

2.
Hurley D  Taiz L 《Plant physiology》1989,89(2):391-395
The vacuolar H+-ATPase of maize (Zea mays L.) root tip cells has been localized at the EM level using rabbit polyclonal antibodies to the 69 kilodalton subunit and protein A-colloidal gold. Intracellular gold particles were detected mainly on the tonoplast and Golgi membranes. Only about 27% of the vacuoles were labeled above background. The absence of gold particles on the majority of vacuoles suggests either that the tonoplast H+-ATPase is degraded during tissue preparation or that the small vacuoles of root tip cells are specialized with respect to H+-ATP ase activity. The pattern of gold particles on the labeled vacuoles ranged from uniform to patchy. Virtually all of the Golgi bodies were labeled by the antibody, but the particle densities were too low to determine whether the H+-ATPase was associated with specific regions, such as the trans-face. Cell wall-labeling was also observed which could be partially prevented by the inclusion of gelatin as a blocking agent. The immunocytochemical results confirm previous biochemical studies with isolated membrane fractions (A Chanson, L Taiz 1985 Plant Physiol 78: 232-240).  相似文献   

3.
Ni M  Beevers L 《Plant physiology》1991,97(1):264-272
Tonoplast vesicles were isolated by discontinuous sucrose gradient centrifugation in the presence of Mg2+ from 5 day old corn (Zea mays L., Golden Cross Bantam) seedling roots. Marker enzyme assays indicated only a low degree of cross-contamination of tonoplast vesicles at the 10/23% (weight/weight) interface by other membrane components. Severalfold enrichment of tonoplast ATPase and pyrophosphatase was indicated in tonoplast fractions by dot blot studies with antibodies against an oat tonoplast ATPase and a mung bean tonoplast pyrophosphatase. Comparison of two-dimensional electrophoretic gels of tonoplast and microsomal membrane polypeptides revealed approximately 68 polypeptides to be specific to tonoplast by silver staining. Immunoblot analysis with antibodies against a tonoplast holoenzyme ATPase from oat roots revealed the presence of the 72, 60, and 41 kilodalton polypeptides in isolated tonoplast vesicles from corn roots. Affinity blotting with concanavalin A and secondary antibodies indicated the degree of glycosylation of tonoplast polypeptides, where 21 of 68 tonoplast-specific polypeptides contained detectable carbohydrate moieties. Salt and NaOH washes removed 38 of the tonoplast-specific polypeptides, indicating a peripheral association with the membrane. Thirteen of the peripheral polypeptides and eight of the integral polypeptides were identified as glycoproteins. This information on the polypeptide composition of the tonoplast of root cells will aid in gaining insight into the role of this membrane in controlling vacuolar functions.  相似文献   

4.
This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl2). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl2 treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants.  相似文献   

5.
Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier.  相似文献   

6.
《Flora》2005,200(4):332-338
The root tubers of Asphodelus aestivus consist mostly of enlarged fleshy storage tissue. They are bounded by a multiple-layered velamen, responsible for rapid water uptake, water loss reduction, osmotic and mechanical protection. In the cortex area, thin-walled idioblasts contain numerous raphides of calcium oxalate in their large vacuole with a distinctive tonoplast. Wide morphological variations are observed among the raphide cross sections. Electron-dense compounds penetrate the raphide surface and raphide groove. Raphides seem to be vital for the protection of the root tuber parenchyma from herbivores. The cells of uniseriate endodermis are heavily thickened possessing a few plasmodesmata. The vascular cylinder is 20–28-arch and the root xylem consists of vessels in short radial rows, alternating with clusters of phloem cells. The presence of cells, which contain soluble polysaccharides in their large vacuole, is conspicuous after employing the Schiff's reagent. Exodermis cells and all cell walls, especially the thick ones of the endodermis, are also stained. Numerous parenchyma cells, especially those around vascular bundles are stained intensely, when exposed to Sudan Black B. These cells occurring as solitary idioblasts abundantly accumulate oil. Electron-dense remnants are evident within the vacuoles of the storage cells especially near the vascular tissue. The morphological features of A. aestivus root tubers and the major part of the total plant biomass are responsible for the species’ occurrence and frequent dominance in a wide array of arid environments. A. aestivus possessing root tubers is proved to be very efficient in storing water during the long summer drought, less susceptible to climatic stress and well synchronized with the climatic fluctuations of the Mediterranean environment.  相似文献   

7.
The sink mobilizing abillity is partially determined by sugar uptake rates of storage cells. Two synthetic growth regulators (Pix and BAS 106W) were tested for their effect on sucrose uptake in root tissue discs or glucose uptake in cell cultures of sugar beet. In tissue discs, uptake at the plasmalemma was determined by incubating the discs for 1 h in the presence of 5 mM sucrose and at the tonoplast for 4 h in the presence of 40 mM sucrose. Cell cultures were incubated for 1 h in the presence of 1 mM glucose. Pix (10 mg l–1) caused a 20% stimulation of active sucrose uptake at the plasmalemma. Active sucrose uptake at the tonoplast was increased 67% by 100 mg l–1 Pix. No effect of BAS 106W was observed on sucrose uptake in tissue discs. In cell cultures, a 65% enhancement of active glucose uptake was observed with both Pix and BAs 106W. When the bioregulators were applied to the root medium of seedlings, Pix but not BAS 106W resulted in increased root/shoot ratio, translocation of 14C-assimilates, and allocation of more biomass to the root sink. The data suggested that sugar transport and translocation may be used as biochemical criteria for rapid screening of effective yield enhancing bioregulators.  相似文献   

8.
Adenosine-triphosphatase activity was localized by cytochemical methods in Lycopersicon esculentum Mill seedling roots. The identity of the enzyme was confirmed by its sensitivity to specific inhibitors. A differential distribution of ATPase activity was found depending on the region of the root. Under saline conditions, an increase of the tonoplast ATPase activity is observed, while the plasma membrane bound-ATPase activity decreases in the medial and basal regions of the root.  相似文献   

9.
Tonoplast and plasma membranes (PM) were isolated from barley roots (Hordeum vulgare L. cv California Mariout 72) using sucrose step gradients. The isolation procedure yielded sufficient quantities of PM and tonoplast vesicles that were sealed and of the right orientation to measure ATP-dependent proton transport in vitro. The proteins of the endoplasmic reticulum, tonoplast-plus-Golgi membrane (TG) and PM fractions were separated on sodium dodecyl sulfate gels, and immunoblots were used to test for cross-contamination between the fractions. Proteins that cross-reacted with antibodies to the PM ATPase from corn roots and Neurospora were greatly enriched in the PM fraction, as were proteins that cross-reacted with monoclonal antibodies to an arabinogalactan protein from the PM of tobacco cells. Proteins that cross-reacted with antibodies to the 58- and 72-kilodalton subunits of the tonoplast ATPase of red beet storage tissue were greatly enriched in the TG fraction. The results with immunoblots and enzyme assays indicated that there was little cross-contamination between the tonoplast and PM vesicles. The molecular weights and isoelectric points of the PM ATPase and the tonoplast ATPase subunits were also determined using immunoblots of two-dimensional gels of the PM and TG proteins.  相似文献   

10.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

11.
Electrolyte leakage of Meloidogyne incognita-infected and healthy tomato roots was compared by conductivity measurements, and by compartmental analysis using ⁸⁶Rb. Conductivity measurements suggested difference in electrolyte loss from healthy and galled roots. On a percentage basis, a greater rate of efflux occurred for healthy plants, but galled roots contain more electrolytes and may show a larger net loss. Compartmental analysis indicated that: (i) the longer half-time for ⁸⁶Rb loss from vacuoles of galled root cells could indicate either a greater vacuolar content or decreased tonoplast permeability, (ii) the shorter half-time for loss ⁸⁶Rb from the cytoplasm of galled root cells could reflect either a reduced cytoplasmic content or an increased plasma membrane permeability, and (iii) in split-root plants, the permeability of the tonoplast and the plasma membrane of cells in nongalled roots is increased by nematode infection on the other half of the root system. Thus, a mechanism for mobilizing minerals to the infection site is proposed.  相似文献   

12.
An NMR method with a pulsed magnetic field gradient was applied to study changes in water permeability of the vacuolar symplast in maize (Zea mays L.) seedling roots treated with various inhibitors of cell metabolism. The results were qualitatively analogous to literature data on conductivity changes of intercellular gap junctions in animal cells exposed to similar treatments. Electron microscopy examination of root cells provided evidence for the existence of membrane contacts between the endoplasmic reticulum and the tonoplast. It is supposed that vacuoles of neighboring plant cells are interconnected through highly dynamical gap junctions between the tonoplast and the endoplasmic reticulum membrane.  相似文献   

13.
Brauer D  Tu SI 《Plant physiology》1991,95(3):707-710
Certain carboxylic acid groups within the primary structure of proton translocating proteins are thought to be involved in the proton pathway. In this report, the effects of a lipophilic carboxylic acid reactive reagent, N-cyclo-N′(4-dimethylamino-α-naphthyl)carbodiimide (NCD-4), on the two types of proton pumps in maize (Zea mays L.) root microsomes were investigated. NCD-4 was found to inhibit the vacuolar-type H+-ATPase in microsomal preparations; however, the plasma membrane-type H+-ATPase was unaffected. The H+-ATPase in highly purified tonoplast vesicles was also inhibited by NCD-4. Inhibition was dependent on the concentration and length of exposure to the reagent. However, there was little, if any, increase in the fluorescence of treated vesicles, indicating few carboxylic acid residues were reacting. Inhibition of the tonoplast H+-ATPase by NCD-4 was examined further with a partially purified preparation. The partially purified H+-ATPase also showed sensitivity to the NCD-4, supporting the hypothesis that this carboxylic acid reagent is an inhibitor of the tonoplast ATPase from maize roots.  相似文献   

14.
Moeller CH  Mudd JB 《Plant physiology》1982,70(5):1554-1561
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes.  相似文献   

15.
Salinity stress is one of the most serous factors limiting the productivity of agricultural crops. Previous studies have shown that exogenous fatty acids (EFAs) enhanced plant performance in saline environment. However, the mechanisms remained unclear. This study aimed to investigate whether EFAs (palmitic and linoleic acids) had ameliorating effects on salt injury in NaCl-treated barley (Hordeum vulgare L.) seedlings, and to explore the possible mechanisms by determining tonoplast composition and function. The results showed that linoleic acid at 1 mmol l−1 in culture solution possessed protective effects on root tonoplast function against salt stress in the barley seedlings; this was accompanied with a significant suppression of the degradation of phospholipids and PAs in tonoplast vesicles. Moreover, these salt-ameliorating effects of linoleic acid on tonoplast function were also indicated by the increase in H+-ATPase and H+-PPase activities. In response to the changes in membrane bound enzyme activities, an augmentation in the activity of a vacuolar Na+/H+ antiport was occurred by the application of linoleic acid under saline conditions. These findings suggested that the application of linoleic acid exhibited protective effects on tonoplast function in the barley seedlings under salt stress, perhaps due partly to suppress the degradation of phospholipids and PAs in tonoplast vesicles, thus leading partial restorations in the activities of vacuolar H+-ATPase, H+-PPase and Na+/H+ antiport.  相似文献   

16.
We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.  相似文献   

17.
Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet   总被引:12,自引:11,他引:1       下载免费PDF全文
The mechanism of sucrose transport into the vacuole of root parenchyma cells of sugar beet was investigated using discs of intact tissue. Active sucrose uptake was evident only at the tonoplast. Sucrose caused a transient 8.3 millivolts depolarization of the membrane potential, suggesting an ion co-transport mechanism. Sucrose also stimulated net proton efflux. Active (net) uptake of sucrose was strongly affected by factors that influence the alkali cation and proton gradients across biological membranes. Alkali cations (Na+ and K+) at 95 millimolar activity stimulated active uptake of sucrose 2.1- to 4-fold, whereas membrane-permeating anions inhibited active sucrose uptake. The pH optima for uptake was between 6.5 and 7.0, pH values slightly higher than those of the vacuole. The ionophores valinomycin, gramicidin D, and carbonyl cyanide m-chlorophenylhydrazone at 10 micromolar concentrations strongly inhibited active sucrose uptake. These data are consistent with the hypothesis that an alkali cation influx/proton efflux reaction is coupled to the active uptake of sucrose into the vacuole of parenchyma cells in the root sink of sugar beets.  相似文献   

18.
Nitrate regulation of protein synthesis and RNA translation in maize (Zea mays L. var B73) roots was examined, using in vivo labeling with [35S]methionine and in vitro translation. Nitrate enhanced the synthesis of a 31 kilodalton membrane polypeptide which was localized in a fraction enriched in tonoplast and/or endoplasmic reticulum membrane vesicles. The nitrate-enhanced synthesis was correlated with an acceleration of net nitrate uptake by seedlings during initial exposure to nitrate. Nitrate did not consistently enhance protein synthesis in other membrane fractions. Synthesis of up to four soluble polypeptides (21, 40, 90, and 168 kilodaltons) was also enhanced by nitrate. The most consistent enhancement was that of the 40 kilodalton polypeptide. No consistent nitrate-induced changes were noted in the organellar fraction (14,000g pellet of root homogenates). When roots were treated with nitrate, the amount of [35S]methionine increased in six in vitro translation products (21, 24, 41, 56, 66, and 90 kilodaltons). Nitrate treatment did not enhance accumulation of label in translation products with a molecular weight of 31,000 (corresponding to the identified nitrate-inducible membrane polypeptide). Incubation of in vitro translation products with root membranes caused changes in the SDS-PAGE profiles in the vicinity of 31 kilodaltons. The results suggest that the nitrate-inducible, 31 kilodalton polypeptide from a fraction enriched in tonoplast and/or endoplasmic reticulum may be involved in regulating nitrate accumulation by maize roots.  相似文献   

19.
In isolated phloem segments of celery (Apium graveolens L.), a tissue highly specific for sucrose and mannitol uptake, glucose uptake occurs at very low rates and exhibits biphasic kinetics. Nonpenetrating inhibitors such as parachloromercuribenzene sulfonic acid did not inhibit glucose uptake. However, uptake was greatly inhibited by penetrating inhibitors such as N-ethylmaleimide and carbonylcyanide-m-chlorophenyl hydrazone. Carbonylcyanide-m-chlorophenyl hydrazone inhibition of uptake was reversed by washing and addition of thiol reagents to uptake solutions. Phlorizin, a competitive inhibitor of glucose caused moderate inhibition of uptake only after 3 hours of tissue exposure. Low pH, fusicoccin, and low turgor which enhance H+-sugar cotransport did not alter uptake rates. Furthermore, glucose did not induce alkalinization of the uptake media. Efflux analysis indicated that the presence of 50 millimolar unlabeled glucose in the wash media enhanced exchange of the labeled glucose across the tonoplast. Results indicate that the glucose carrier is not located at the plasmalemma but appears to be present at the membrane of an intracellular compartment, most likely the tonoplast. Carrier-mediated glucose transport in this tissue is proposed to be a facilitated diffusion.  相似文献   

20.
Protoplasts and vacuoles were isolated and purified in large numbers from the CAM plants Ananas comosus (pineapple) and Sedum telephium for protein characterization. Vacuoles were further fractionated to yield a tonoplast vesicle preparation. Polypeptides of protoplasts, vacuoles, and tonoplast vesicles were compared to whole leaf polypeptides from both plants by one-dimensional sodium dodecylsulfate-polyacrylamide gel electrophoresis. Approximately 100 vacuole polypeptides could be resolved of which 25 to 30% were enriched in the tonoplast vesicles. The proteins of protoplasts, vacuoles, and tonoplast vesicles from A. comosus were analyzed further by two-dimensional gel electrophoresis. When one-dimensional electrophoretograms of A. comosus polypeptides were stained with a glycoprotein-specific periodic acid Schiff stain, very few polypeptides appeared to be glycosylated, whereas a large number of glycosylated polypeptides were detected with a silver-based glycoprotein stain particularly in tonoplast vesicles. Analysis of the enzymic content of vacuoles from both plants indicated the presence of a variety of hydrolases, including bromelain as a major constituent of A. comosus. No substrate-specific ATPase, however, could be detected in vacuoles or tonoplast vesicles from either plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号