首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
BACKGROUND: Islet amyloid polypeptide (IAPP) is deposited as amyloid in the islets of Langerhans in type 2 diabetes. The mechanism behind the formation of the cytotoxic fibrils is unknown. Islet amyloid develops in a mouse IAPP null mouse strain that expresses human IAPP (+hIAPP/-mIAPP) after 9 months on a high-fat diet. Herein we investigate the effect that individual free fatty acids (FFAs) exert on formation of amyloid-like fibrils from synthetic IAPP and the effects of FFAs on IAPP polymerization in +hIAPP/-mIAPP islets cultivated in vitro. MATERIALS AND METHODS: In the study myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid were used together with albumin. Thioflavin T (Th T) assay was used for quantification of amyloid-like fibrils. Islets were isolated from the +hIAPP/-mIAPP transgenic strain and cultured in the presence of the FFAs for 2 days. Immuno-electron microscopy was used for evaluation. RESULTS: The Th T assay showed that all studied FFAs potentiated fibril formation but that myristic acid revealed the highest capacity. In some cells from cultured islets, intragranular aggregates were present. These aggregates had a filamentous appearance and labeled with antibodies against IAPP. In some cells cultured in the presence of linoleic acid, large amounts of intracellular amyloid were present. Earlier, this has not been observed after such a short incubation period. CONCLUSIONS: Our studies suggest that FFAs can potentiate amyloid formation in vitro, probably without being integrated in the fibril. Cultivation of +hIAPP/-mIAPP transgenic mouse islets with FFAs results in altered morphology of the secretory granules with appearance of IAPP- immunoreactive fibrillar material. We suggest that such fibrillar material may seed extracellular amyloid formation after exocytosis.  相似文献   

2.
BACKGROUND: Human, but not mouse, islet amyloid polypeptide (IAPP) is amyloidogenic. Transgenic mice overexpressing human IAPP in the beta cells of the islets of Langerhans should be useful in identifying factors important for the deposition of IAPP as insoluble amyloid fibrils. MATERIALS AND METHODS: Transgenic mice expressing human IAPP were examined using several experimental models for the production of persistent hyperglycemia, as well as for the overstimulation and/or inhibition of beta cell secretion. Obesity was induced by aurothioglucose. Persistent hyperglycemia was produced by long-term administration of glucocorticosteroids or by partial pancreatectomy. Inhibition of normal beta cell exocytosis by diazoxide administration, with or without concurrent dexamethasone injections, was carried out to increase crinophagy of secretory granules. The human IAPP gene was also introduced into the ab and ob mouse models for diabetes. Finally, isolated islets cultivated in vitro at high glucose concentration were also examined. RESULTS: No amyloid deposits were found in the pancreata of any of the animals, either by light microscopy after Congo red staining or by electron microscopy after immunogold labeling with antibodies specific for human IAPP. Aurothioglucose treatment resulted in increased numbers of granules in the beta cell and the appearance of large lysosomal bodies without amyloid. However, islets from db and ob mice expressing human IAPP cultivated in vitro in the presence of glucocorticosteroid and/or growth hormone, were found to contain extracellular amyloid deposits reacting with antibodies to human IAPP. CONCLUSIONS: Oversecretion of human IAPP or increased crinophagy are not sufficient for amyloid formation. This indicates that other factors must influence amyloid deposition; one such factor may be the local clearance of IAPP.  相似文献   

3.
Amyloid deposits in the islets of Langerhans occur in association with type 2 diabetes mellitus (DM) in humans and cats and consist of a 37-amino-acid polypeptide known as islet amyloid polypeptide (IAPP). In order to find an explanation for the situation that islet amyloid (IA) does not develop in common rodent species, we have deduced the amino acid sequence of the IAPP molecule in mouse, rat and hamster. We find that a specific region of the molecule diverges to a high degree. Synthetic peptides corresponding to this region of human and hamster IAPP were compared for their ability to form amyloid fibrils in vitro. Whereas the human peptide readily formed fibrils with amyloid character, the hamster peptide completely lacked this property. We suggest this to be a likely explanation for the differences in IA formation between humans and rodents and discuss our findings in relation to the type 2 DM syndrome.  相似文献   

4.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

5.
Deposition of β cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mm glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that β cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of β cells.  相似文献   

6.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.  相似文献   

7.
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.  相似文献   

8.
Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.  相似文献   

9.
Deposition of islet amyloid polypeptide (IAPP) as amyloid in the pancreatic islet occurs in approximately 90% of individuals with Type 2 diabetes and is associated with decreased islet beta-cell mass and function. Human IAPP (hIAPP), but not rodent IAPP, is amyloidogenic and toxic to islet beta-cells. In addition to IAPP, islet amyloid deposits contain other components, including heparan sulfate proteoglycans (HSPGs). The small molecule 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha-D-xylo-hexopyranose (WAS-406) inhibits HSPG synthesis in hepatocytes and blocks systemic amyloid A deposition in vivo. To determine whether WAS-406 inhibits localized amyloid formation in the islet, we incubated hIAPP transgenic mouse islets for up to 7 days in 16.7 mM glucose (conditions that result in amyloid deposition) plus increasing concentrations of the inhibitor. WAS-406 at doses of 0, 10, 100, and 1,000 microM resulted in a dose-dependent decrease in amyloid deposition (% islet area occupied by amyloid: 0.66 +/- 0.14%, 0.10 +/- 0.06%, 0.09 +/- 0.07%, and 0.004 +/- 0.003%, P < 0.001) and an increase in beta-cell area in hIAPP transgenic islets (55.0 +/- 2.6 vs. 60.6 +/- 2.2% islet area for 0 vs. 100 microM inhibitor, P = 0.05). Glycosaminoglycan, including heparan sulfate, synthesis was inhibited in both hIAPP transgenic and nontransgenic islets (the latter is a control that does not develop amyloid), while O-linked protein glycosylation was also decreased, and WAS-406 treatment tended to decrease islet viability in nontransgenic islets. Azaserine, an inhibitor of the rate-limiting step of the hexosamine biosynthesis pathway, replicated the effects of WAS-406, resulting in reduction of O-linked protein glycosylation and glycosaminoglycan synthesis and inhibition of islet amyloid formation. In summary, interventions that decrease both glycosaminoglycan synthesis and O-linked protein glycosylation are effective in reducing islet amyloid formation, but their utility as pharmacological agents may be limited due to adverse effects on the islet.  相似文献   

10.

Background

Amyloid fibrils created by misfolding and aggregation of proteins are a major pathological feature in a variety of degenerative diseases. Therapeutic approaches including amyloid vaccines and anti-aggregation compounds in models of amyloidosis point to an important role for amyloid in disease pathogenesis. Amyloid deposits derived from the β-cell peptide islet amyloid polypeptide (IAPP or amylin) are a characteristic of type 2 diabetes and may contribute to loss of β-cells in this disease.

Methods

We developed a cellular model of rapid amyloid deposition using cultured human islets and observed a correlation between fibril accumulation and β-cell death. A series of overlapping peptides derived from IAPP was generated.

Results

A potent inhibitor (ANFLVH) of human IAPP aggregation was identified. This inhibitory peptide prevented IAPP fibril formation in vitro and in human islet cultures leading to a striking increase in islet cell viability.

Conclusions

These findings indicate an important contribution of IAPP aggregation to β-cell death in situ and point to therapeutic applications for inhibitors of IAPP aggregation in enhancing β-cell survival.

General significance

Anti-amyloid compounds could potentially reduce the loss of β-cell mass in type 2 diabetes and maintain healthy human islet cultures for β-cell replacement therapies.  相似文献   

11.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

12.
Type 2 diabetes mellitus (T2DM) is characterized by an approximately 60% deficit in beta-cell mass, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). Human IAPP (hIAPP) forms oligomers, leading to either amyloid fibrils or toxic oligomers in an aqueous solution in vitro. Either application of hIAPP on or overexpression of hIAPP in cells induces apoptosis. It remains controversial whether the fibrils or smaller toxic oligomers induce beta-cell apoptosis. Rifampicin prevents hIAPP amyloid fibril formation and has been proposed as a potential target for prevention of T2DM. We examined the actions of rifampicin on hIAPP amyloid fibril and toxic oligomer formation as well as its ability to protect beta-cells from either application of hIAPP or endogenous overexpression of hIAPP (transgenic rats and adenovirus-transduced beta-cells). We report that rifampicin (Acocella G. Clin Pharmacokinet 3: 108-127, 1978) prevents hIAPP fibril formation, but not formation of toxic hIAPP oligomers (Bates G. Lancet 361: 1642-1644, 2003), and does not protect beta-cells from apoptosis induced by either overexpression or application of hIAPP. These data emphasize that toxic hIAPP oligomers, rather than hIAPP fibrils, initiate beta-cell apoptosis and that screening tools to identify inhibitors of amyloid fibril formation are likely to be less useful than those that identify inhibitors of toxic oligomer formation. Finally, rifampicin and related molecules do not appear to be useful as candidates for prevention of T2DM.  相似文献   

13.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

14.
Islet amyloid polypeptide (IAPP) is a recently discovered pancreatic islet hormone which is stored with insulin in beta cell granules. IAPP may have a significant role in the development of Type 2 diabetes mellitus due to its propensity to form islet cell-disrupting amyloid deposits, and by opposing the action of insulin in peripheral tissues. Most evidence to-date suggests that an intrinsic structural motif of IAPP is linked to the amyloidogenicity of IAPP, and that this motif occurs only in those species (e.g., humans and cats) that also develop age-associated or Type 2 diabetes We utilized polymerase chain reaction methodology in this study to obtain the IAPP nucleotide and protein sequences of the dog, a species not known to develop islet amyloid. We show that dog IAPP contains the same putative amyloidogenic sequence (GAILS) at residues 24-28 as human and cat IAPP, and that although dogs do not develop islet amyloid they do develop IAPP-derived amyloid in association with neoplastic beta cells (i.e., insulinomas). These results provide strong evidence that the amyloidogenicity of IAPP is linked to at least two prerequisites: a species-specific amyloidogenic structural motif, and aberrations in the synthesis (or processing) of IAPP which leads to increased concentration of IAPP in the local milieau.  相似文献   

15.
Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of β-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased β-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and β-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and β-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.  相似文献   

16.
Type II diabetes, in its late stages, is often associated with the formation of extracellular islet amyloid deposits composed of islet amyloid polypeptide (IAPP or amylin). IAPP is stored before secretion at millimolar concentrations within secretory granules inside the β-cells. Of interest, at these same concentrations in vitro, IAPP rapidly aggregates and forms fibrils, yet within secretory granules of healthy individuals, IAPP does not fibrillize. Insulin is also stored within the secretory granules before secretion, and has been shown in vitro to inhibit IAPP fibril formation. Because of insulin's inhibitory effect on IAPP fibrillization, it has been suggested that insulin may also inhibit IAPP-mediated permeabilization of the β-cell plasma membrane in vivo. We show that although insulin is effective at preventing fiber-dependent membrane disruption, it is not effective at stopping the initial phase of membrane disruption before fibrillogenesis, and does not prevent the formation of small IAPP oligomers on the membrane. These results suggest that insulin has a more complicated role in inhibiting IAPP fibrillogenesis, and that other factors, such as the low pH of the secretory granule, may also play a role.  相似文献   

17.
OBJECTIVE: Islet amyloid polypeptide (IAPP)/amylin is produced by the pancreatic islet beta-cells, which also produce insulin. To study potential functions of IAPP, we have generated transgenic mice overexpressing human IAPP (hIAPP) in the beta-cells. These mice show a diabetic phenotype when challenged with an oral glucose load. In this study, we examined the islet cytoarchitecture in the hIAPP mice by examining islet cell distribution in the neonatal period, as well as 1, 3 and 6 months after birth. RESULTS: Neonatal transgenic mice exhibited normal islet cell distribution with beta-cells constituting the central islet portion, whereas glucagon and somatostatin-producing cells constituted the peripheral zone. In contrast, in hIAPP transgenic mice at the age of 1 month, the glucagon-immunoreactive (IR) cells were dispersed throughout the islets. Furthermore, at the age of 3 and 6 months, the islet organisation was similarly severely disturbed as at 1 month. Expression of both endogenous mouse IAPP and transgenic hIAPP was clearly higher in 6-month-old mice as compared to newborns, as revealed by mRNA in situ hybridisation. CONCLUSIONS: Mice transgenic for hIAPP have islets with disrupted islet cytoarchitecture in the postnatal period, particularly affecting the distribution of glucagon-IR cells. This islet cellular phenotype of hIAPP transgenic mice is similar to that of other mouse models of experimental diabetes and might contribute to the impaired glucose homeostasis.  相似文献   

18.
《Biophysical journal》2020,118(5):1142-1151
The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied. The baboon peptide differs from human IAPP at three positions containing K1I, H18R, and A25T substitutions. The K1I substitution is a rare example of a replacement in the N-terminal region of amylin. The effect of this mutation on amyloid formation has not been studied, but it reduces the net charge, and amyloid prediction programs suggest that it should increase amyloidogenicity. The A25T replacement involves a nonconservative substitution in a region of IAPP that is believed to be important for aggregation, but the effects of this replacement have not been examined. The H18R point mutant has been previously shown to reduce aggregation in vitro. Baboon amylin forms amyloid on the same timescale as human amylin in vitro and exhibits similar toxicity toward cultured β-cells. The K1I replacement in human amylin slightly reduces toxicity, whereas the A25T substitution accelerates amyloid formation and enhances toxicity. Photochemical cross-linking reveals that the baboon amylin, like human amylin, forms low-order oligomers in the lag phase of amyloid formation. Ion-mobility mass spectrometry reveals broadly similar gas phase collisional cross sections for human and baboon amylin monomers and dimers, with some differences in the arrival time distributions. Preamyloid oligomers formed by baboon amylin, but not baboon amylin fibers, are toxic to cultured β-cells. The toxicity of baboon oligomers and lack of significantly detectable toxicity with exogenously added amyloid fibers is consistent with the hypothesis that preamyloid oligomers are the most toxic species produced during IAPP amyloid formation.  相似文献   

19.
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases.  相似文献   

20.
Levy M  Porat Y  Bacharach E  Shalev DE  Gazit E 《Biochemistry》2008,47(22):5896-5904
The study of the mechanism of amyloid fibril formation and its inhibition is of key medical importance due to the lack of amyloid assembly inhibitors that are approved for clinical use. We have previously demonstrated the potent inhibitory potential of phenolsulfonphthalein, a nontoxic compound that was approved for diagnostic use in human subjects, on aggregation of islet amyloid polypeptide (IAPP) that is associated with type 2 diabetes. Here, we extend our studies on the mechanism of action of phenolsulfonphthalein by comparing its antiamyloidogenic effect to a very similar compound that is also approved for human use, phenolphthalein. While these compounds have very similar primary chemical structures, they significantly differ in their three-dimensional conformation. Our results clearly demonstrated that these two compounds had completely different inhibitory potencies: While phenolsulfonphthalein was a very potent inhibitor of amyloid fibril formation by IAPP, phenolphthalein did not show significant antiamyloidogenic activity. This behavior was observed with a short amyloid fragment of IAPP and also with the full-length polypeptide. The NMR spectrum of IAPP 20-29 in the presence of phenolsulfonphthalein showed chemical shift deviations that were different from the unbound or phenolphthalein-bound peptide. Differential activity was also observed in the inhibition of insulin amyloid formation by these two compounds, and density-gradient experiments clearly demonstrated the different inhibitory effect of the two compounds on the formation of prefibrillar assemblies. Taken together, our studies suggest that the three-dimensional arrangement of the polyphenol phenolsulfonphthalein has a central role in its amyloid formation inhibition activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号