首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular systems are generally robust against fluctuations of intracellular parameters such as gene expression level. However, little is known about expression limits of genes required to halt cellular systems. In this study, using the fission yeast Schizosaccharomyces pombe, we developed a genetic ‘tug‐of‐war’ (gTOW) method to assess the overexpression limit of certain genes. Using gTOW, we determined copy number limits for 31 cell‐cycle regulators; the limits varied from 1 to >100. Comparison with orthologs of the budding yeast Saccharomyces cerevisiae suggested the presence of a conserved fragile core in the eukaryotic cell cycle. Robustness profiles of networks regulating cytokinesis in both yeasts (septation‐initiation network (SIN) and mitotic exit network (MEN)) were quite different, probably reflecting differences in their physiologic functions. Fragility in the regulation of GTPase spg1 was due to dosage imbalance against GTPase‐activating protein (GAP) byr4. Using the gTOW data, we modified a mathematical model and successfully reproduced the robustness of the S. pombe cell cycle with the model.  相似文献   

2.
3.
Cells sense their size and use this information to coordinate cell division with cell growth to maintain a constant cell size within a given population. A model has been proposed for cell size control in the rod-shaped cells of the fission yeast, Schizosaccharomyces pombe. This involves a protein localized to the cell ends, which inhibits mitotic activators in the middle of the cell in a cell size-dependent manner. This protein, Pom1, along with another tip-localized protein, Nif1, have been implicated as direct sensors of cell size controlling the onset of mitosis. Here we have investigated cell size variability and size homeostasis at the G2/M transition, focusing on the role of pom1 and nif1. Cells deleted for either of these 2 genes show wild-type size homeostasis both in size variability analyses and size homeostasis experiments. This indicates that these genes do not have a critical role as direct cell size sensors in the control mechanism. Cell size homeostasis also seems to be independent of Cdc2–Tyr15 phosphorylation, suggesting that the size sensing mechanism in fission yeast may act through an unidentified pathway regulating CDK activity by an unknown mechanism.  相似文献   

4.
To identify near complete sets of genes required for the cell cycle and cell shape, we have visually screened a genome-wide gene deletion library of 4843 fission yeast deletion mutants (95.7% of total protein encoding genes) for their effects on these processes. A total of 513 genes have been identified as being required for cell cycle progression, 276 of which have not been previously described as cell cycle genes. Deletions of a further 333 genes lead to specific alterations in cell shape and another 524 genes result in generally misshapen cells. Here, we provide the first eukaryotic resource of gene deletions, which describes a near genome-wide set of genes required for the cell cycle and cell shape.  相似文献   

5.
6.

Background

Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle.

Results

Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes.

Conclusions

In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.  相似文献   

7.
Programmed cell death in fission yeast   总被引:2,自引:0,他引:2  
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.  相似文献   

8.
Distributions of rupture sites of fission yeast cells ruptured by glass beads have been related to a new morphometric analysis. As shown previously (Johnson et al.,Cell Biophysics, 1995), ruptures were not randomly distributed nor was their distribution dictated by geometry, rather, ruptures at the extensile end were related to cell length just as the rate of extension is related to cell length. The extension patterns of early log, mid-log, late log, and stationary phase cells from suspension cultures were found to approximate the linear growth patterns of Kubitschek and Clay (1986). The median length of cells was found to decline through the log phase in an unbalanced manner.  相似文献   

9.
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.  相似文献   

10.
《Current biology : CB》2022,32(12):2780-2785.e2
  1. Download : Download high-res image (614KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
One of the key cell cycle regulators, the anaphase promoting complex (APC) or cyclosome, plays a dual role during mitotic exit. By destroying anaphase inhibitors it promotes sister chromatid separation, and by destroying B-type cyclins it promotes cytokinesis and removes the replication block. Under unfavorable growth conditions, most eukaryotic cells, including the fission yeastSchizosaccharomyces pombe exit mitosis normally but are arrested in G1 and do not enter the S phase. InS. pombe, mutations in two APC/cyclosome subunits,nuc2-663 andapc10 ts, cause mitotic defects at 36°C, and under nitrogen starvation at 25°C they lead to inability of stopping in G1 and hence to sterility. To gain more insight into the mechanisms regulating APC/cyclosome activity during normal growth and under nitrogen starvation, we screened a genomic library to identify high-copy suppressors of the temperature sensitivity ofnuc2-663. Here we show that overexpression ofapc10 + allows this strain to grow at 32°C and rescues it from sensitivity to the protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone at 25°C. These observations are consistent with the proposed role for Apc10p as a positive regulator of the APC/cyclosome. However,apc10 + does not suppress the sterility ofnuc2-663 mutant cells, suggesting that it plays a specific role in APC regulation (e.g., in substrate recognition) rather than in general APC activation.  相似文献   

13.
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.  相似文献   

14.
Fission yeast Cdc42 regulates polarized growth and is involved in For3 formin activation and actin cable assembly. We show here that a thermosensitive strain carrying the cdc42L160S allele has membrane traffic defects independent of the actin cable defects. This strain has decreased acid phosphatase (AP) secretion, intracellular accumulation of vesicles and fragmentation of vacuoles. In addition, the exocyst is not localized to the tips of these cells. Overproduction of the scaffold protein Pob1 suppressed cdc42L160S thermosensitive growth and restored exocyst localization and AP secretion. The GTPase Rho3 also suppressed cdc42L160S thermosensitivity, restored exocyst localization and AP secretion. However, Rho3 did not restore the actin cables in these cells as Pob1 does. Similarly, overexpression of psy1(+) , coding a syntaxin (t-SNARE) homolog, or of ypt2(+) , coding an SEC4 homolog in fission yeast, rescued growth at high temperature but did not restore actin cables, nor the exocyst-polarized localization. cdc42L160S cells also have defects in vacuole formation that were rescued by Pob1, Rho3 and Psy1. All together, we propose that Cdc42 and the scaffold Pob1 are required for membrane trafficking and fusion, contributing to polarized secretion, endosome recycling, vacuole formation and growth.  相似文献   

15.
Wen-Bin Lee 《FEBS letters》2009,583(5):927-932
Yeast cell cycle Boolean network was used as a case study of robustness to protein noise. Robustness was interpreted as involving stability of G1 steady state and sequence of gene expression from cell cycle START to stationary G1. A robustness measure to evaluate robustness strength of a network was proposed. Robust putative networks corresponding to the same steady state and sequence of gene expression of wild-type network were sampled. Architecture of wild-type yeast cell cycle network can be revealed by average topology profile of sampled robust putative networks.  相似文献   

16.
Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1-->3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the chemical structure of alpha-glucan isolated from wild-type and mutant cell walls of the fission yeast Schizosaccharomyces pombe. Wild-type alpha-glucan was found to consist of a single population of linear glucose polymers, approximately 260 residues in length. These glucose polymers were composed of two interconnected linear chains, each consisting of approximately 120 (1-->3)-linked alpha-d-glucose residues and some (1-->4)-linked alpha-D-glucose residues at the reducing end. By contrast, alpha-glucan of an alpha-glucan synthase mutant with an aberrant cell morphology and reduced alpha-glucan levels consisted of a single chain only. We propose that alpha-glucan biosynthesis involves an ordered series of events, whereby two alpha-glucan chains are coupled to create mature cell wall alpha-glucan. This mature form of cell wall alpha-glucan is essential for fission-yeast morphogenesis.  相似文献   

17.
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.  相似文献   

18.
李慧  杨彤  陈茜  白鑫  丁祥 《微生物学报》2021,61(10):3291-3304
[目的] 探究不同温度下酿酒酵母细胞分裂周期蛋白Cdc5蛋白在有丝分裂中的分子动力学变化。[方法] 本研究以酿酒酵母(Saccharomyces cerevisiae)为材料,采用活细胞成像的方法,探究Cdc5蛋白在不同温度下在酿酒酵母有丝分裂过程中的精细分子动力学变化;通过测量OD595绘制生长曲线图,看其宏观的分裂情况是否与微观下Cdc5蛋白的分子动力学变化一致;利用流式细胞术检测细胞的细胞周期变化的情况。[结果] 在胞质分裂时,Cdc5蛋白从母细胞进入子细胞,并在芽颈处发生聚集。25℃条件下细胞中Cdc5蛋白在芽颈处的聚集时间长,37℃条件下Cdc5蛋白在芽颈处聚集时间短,两者间存在显著差异;但两个温度下,细胞中Cdc5蛋白的表达量没有显著性差异。同时,温度也会影响Cdc5蛋白在降解过程中的动力学行为,包括Cdc5蛋白在母细胞与子细胞中荧光强度峰值出现的次数和时间。生长曲线结果显示,酿酒酵母单一细胞分裂周期的变化影响了其宏观的细胞生长,且酵母分裂速度越快,子细胞长宽比越小;细胞周期结果表明,37℃下Cdc5蛋白的动力学变化与酿酒酵母细胞周期变化一致,酿酒酵母细胞周期从G0/G1期进入S期,亦加速了酿酒酵母的分裂。[结论] 本研究首次探究了不同温度下酿酒酵母有丝分裂中Cdc5蛋白的精细分子动力学及对应的酵母的宏观生长情况,结果表明温度会对Cdc5蛋白的动力学产生影响,且其精细分子动力学与酿酒酵母的分裂速度成正相关,该结果为进一步研究其在细胞有丝分裂中的功能提供了前期研究基础。  相似文献   

19.
Microtubules are critical for a variety of cellular processes such as chromosome segregation, intracellular transport and cell shape. Drugs against microtubules have been widely used in cancer chemotherapies, though the acquisition of drug resistance has been a significant issue for their use. To identify novel small molecules that inhibit microtubule organization, we conducted sequential phenotypic screening of fission yeast and human cells. From a library of diverse 10 371 chemicals, we identified 11 compounds that inhibit proper mitotic progression both in fission yeast and in HeLa cells. An in vitro assay revealed that five of these compounds are strong inhibitors of tubulin polymerization. These compounds directly bind tubulin and destabilize the structures of tubulin dimers. We showed that one of the compounds, L1, binds to the colchicine-binding site of microtubules and exhibits a preferential potency against a panel of human breast cancer cell lines compared with a control non-cancer cell line. In addition, L1 overcomes cellular drug resistance mediated by βIII tubulin overexpression and has a strong synergistic effect when combined with the Plk1 inhibitor BI2536. Thus, we have established an economically effective drug screening strategy to target mitosis and microtubules, and have identified a candidate compound for cancer chemotherapy.  相似文献   

20.
Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号