首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteoglycans play a role in regulating proliferation and adhesion of cells to each other and to the basal lamina. Synthesis of proteoglycans is disrupted by β-xylosides, which serve as alternate substrate sites for glycosaminoglycan chain attachment and therefore prevent glycosylation of the core protein. We have investigated the effects of p-nitrophenyl-β-D-xylopyranoside (PNP-xyloside) on cultured human keratinocytes. Stratified cultures were incubated for 7 days with PNP-xyloside (0.05–2.0 mM). Concentrations as low as 0.05 mM increased the secretion of free chondroitin sulfate by 10–15-fold over untreated cultures. Cellassociated proteoglycan decreased as PNP-xyloside concentration increased. At 2 mM PNP-xyloside, heparan sulfate as well as chondroitin sulfate addition to core proteins was disrupted: the core protein of epican, a heparan sulfate form of CD44 found on keratinocytes, was detected immunologically but lacked heparan sulfate. 2.0 mM PNP-xyloside reduced the number of attached cells by 20–25% after 7 days, but had little effect on morphology or protein synthesis. These results indicate that intact proteoglycans are not critical for maintaining epidermal keratinocyte stratification, cell-cell adhesion, or growth. © 1994 Wiley-Liss, Inc.  相似文献   

2.
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent.  相似文献   

3.
CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding.  相似文献   

4.
The expression of the large chondroitin sulfate proteoglycan versican was studied in human adult skin. For this purpose, bacterial fusion proteins containing unique portions of the versican core protein were prepared. Polyclonal antibodies against the fusion proteins specifically reacted with versican from a proteoglycan fraction of MG63 osteosarcoma cells. In immunohistochemical experiments, the affinity- purified antibodies localized versican in the stratum basale of the epidermis, as well as in the papillary and reticular layers of the dermis. An apparent codistribution of versican with the various fiber forms of the elastic network of the dermis suggested an association of versican with microfibrils. Both dermal fibroblasts and keratinocytes expressed versican in culture during active cell proliferation. In line with the observation that versican is absent in the suprabasal layers of the epidermis where keratinocytes terminally differentiate, culture conditions promoting keratinocyte differentiation induced a down- regulation of versican synthesis. In Northern blots versican mRNA could be detected in extracts from proliferating keratinocytes and dermal fibroblasts. Comparison of RNA preparations from semi-confluent and confluent fibroblast cultures demonstrated decreasing amounts of versican mRNA at higher cell densities. This inverse correlation of versican expression and cell density was confirmed by indirect immunofluorescence staining of cultured fibroblasts and keratinocytes. The localization of versican in the basal zone of the epidermis as well as the density dependence of versican in cell cultures suggest a general function of versican in cell proliferation processes that may not solely be confined to the skin.  相似文献   

5.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Glycosaminoglycan-modified isoforms of CD44 have been implicated in growth factor presentation at sites of inflammation. In the present study we show that COS cell transfectants expressing CD44 isoforms containing the alternatively spliced exon V3 are modified with heparan sulfate (HS). Binding studies with three HS-binding growth factors, basic-fibroblast growth factor (b-FGF), heparin binding-epidermal growth factor (HB-EGF), and amphiregulin, showed that the HS-modified CD44 isoforms are able to bind to b-FGF and HB-EGF, but not AR. b-FGF and HB-EGF binding to HS-modified CD44 was eliminated by pretreating the protein with heparitinase or by blocking with free heparin. HS- modified CD44 immunoprecipitated from keratinocytes, which express a CD44 isoform containing V3, also bound to b-FGF. We examined whether HS- modified CD44 isoforms were expressed by activated endothelial cells where they might present HS-binding growth factors to leukocytes during an inflammatory response. PCR and antibody-binding studies showed that activated cultured endothelial cells only express the CD44H isoform which does not contain any of the variably spliced exons including V3. Immunohistological studies with antibodies directed to CD44 extracellular domains encoded by the variably spliced exons showed that vascular endothelial cells in inflamed skin tissue sections do not express CD44 spliced variants. Keratinocytes, monocytes, and dendritic cells in the same specimens were found to express variably spliced CD44. 35SO4(-2)-labeling experiments demonstrated that activated cultured endothelial cells do not express detectable levels of chondroitin sulfate or HS-modified CD44. Our results suggest that one of the functions of CD44 isoforms expressing V3 is to bind and present a subset of HS-binding proteins. Furthermore, it is probable that HS- modified CD44 is involved in the presentation of HS-binding proteins by keratinocytes in inflamed skin. However, our data suggests that CD44 is not likely to be the proteoglycan principally involved in presenting HS- binding growth factors to leukocytes on the vascular cell wall.  相似文献   

7.
Chondroitin sulfate at the plasma membranes of cultured fibroblasts   总被引:6,自引:4,他引:2       下载免费PDF全文
We have previously shown that in confluent human fibroblast cultures chondroitin sulfate proteoglycan is a component of the fibronectin-containing pericellular matrix fibers. In the present work the distribution of chondroitin sulfate was studied in subconfluent cell cultures using antibodies that bind to a chemically defined carbohydrate fragment of chondroitinase ABC-modified chondroitin sulfate proteoglycan. Using immunofluorescence microscopy, we observed, in addition to the fibrillar matrix staining, chondroitin sulfate diffusely distributed at the cell surface. In indirect immunoferritin electron microscopy this staining corresponded to patchy binding of ferritin close (24 nm) to the outer aspect of the plasma membrane. The patchy organization appeared uniform in all cell surfaces. The cell surface chondroitin sulfate could not be removed from the plasma membrane by agents that dissociate electrostatic interactions. These data show that in fibroblasts chondroitin sulfate is a component of the outer aspect of the plasma membrane, and raise the possibility of an integral plasma membrane chondroitin sulfate proteoglycan.  相似文献   

8.
A recently described splice variant of CD44 expressed in metastasizing cell lines of rat tumors has been shown to confer metastatic potential to a non-metastasizing rat pancreatic carcinoma cell line and to non- metastasizing sarcoma cells. Homologues of this variant as well as several other CD44 splice variants are also expressed at the RNA level in human carcinoma cell lines from lung, breast, and colon, and in immortalized keratinocytes. Using antibodies raised against a bacterial fusion protein encoded by variant CD44 sequences, we studied the expression of variant CD44 glycoproteins in normal human tissues and in colorectal neoplasia. Expression of CD44 variant proteins in normal human tissues was readily found on several epithelial tissues including the squamous epithelia of the epidermis, tonsils, and pharynx, and the glandular epithelium of the pancreatic ducts, but was largely absent from other epithelia and from most non-epithelial cells and tissues. In human colorectal neoplasia CD44 variant proteins, including homologues of those which confer metastatic ability to rat tumors, were found on all invasive carcinomas and carcinoma metastases. Interestingly, focal expression was also observed in adenomatous polyps, expression being related to areas of dysplasia. The distribution of the CD44 variants in human tissues suggests that they play a role in a few restricted differentiation pathways and that in colorectal tumors one of these pathways has been reactivated. The finding that metastasis-related variants are already expressed at a relatively early stage in colorectal carcinogenesis and tumor progression, i.e., in adenomatous polyps, suggests the existence of a yet unknown selective advantage linked to CD44 variant expression. The continued expression in metastases would be compatible with a role in the metastatic process.  相似文献   

9.
CD44 is a major cell surface receptor for the glycosaminoglycan, hyaluronan (HA). CD44 binds HA specifically, although certain chondroitin-sulfate containing proteoglycans may also be recognized. CD44 binding of HA is regulated by the cells in which it is expressed. Thus, CD44 expression alone does not correlate with HA binding activity. CD44 is subject to a wide array of post-translational carbohydrate modifications, including N-linked, O-linked and glycosaminoglycan side chain additions. These modifications, which differ in different cell types and cell activation states, can have profound effects on HA binding function and are the main mechanism of regulating CD44 function that has been described to date. Some glycosaminoglycan modifications also affect ligand binding specificity, allowing CD44 to interact with proteins of the extracellular matrix, such as fibronectin and collagen, and to sequester heparin binding growth factors. It is not yet established whether the HA binding function of CD44 is responsible for its proposed involvement in inflammation. It has been shown, however, that CD44/HA interactions can mediate leukocyte rolling on endothelial and tissue substrates and that CD44-mediated recognition of HA can contribute to leukocyte activation. Changes in CD44 expression (mainly up-regulation, occasionally down-regulation, and frequently alteration in the pattern of isoforms expressed) are associated with a wide variety of cancers and the degree to which they spread; however, in other cancers, the CD44 pattern remains unchanged. Increased expression of CD44 is associated with increased binding to HA and increased metastatic potential in some experimental tumor systems; however, in other systems increased HA binding and metastatic potential are not correlated. CD44 may contribute to malignancy through changes in the regulation of HA recognition, the recognition of new ligands and/or other new biological functions of CD44 that remain to be discovered. Abbreviations: aa, amino acid(s); CS, chondroitin sulfate; CSPG, chondroitin sulfate containing proteoglycan; CD44H, ‘hematopoietic’, also called ‘standard’, isoform of CD44 which contains none of the alternatively spliced variant exons; CD44-Rg, CD44 receptor globulin, a secreted chimaeric protein composed of the external domain of the adhesion receptor CD44 and the hinge, CH2 and CH3 regions of human immunoglobulin-G heavy chain; ECM, extracellular matrix; GAG, glycosaminoglycan; HA, hyaluronan; HS, heparan sulfate; KS, keratan sulfate; PB, peripheral blood; PBL, peripheral blood lymphocytes This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
The human CD44 cell-surface glycoprotein participates in a wide variety of cell-cell interactions including lymphocyte homing and tumor metastasis. The CD44 antigen is known to display extensive size heterogeneity when compared between different tissue sources although the structural basis for this variation is not yet clear. Recently, two further isotypes in addition to the basic hemopoietic form of the CD44 antigen have been cloned and sequenced and these have been found to contain all or part of a 200-400-base pair insert within the extracellular domain, suggesting that the characteristic heterogeneity in the molecule may be generated by a mechanism of alternative splicing. We have obtained further evidence for alternative splicing, and we report here the cloning and sequencing of six different CD44 sequence variants from a variety of cell lines using a combination of expression cloning and the polymerase chain reaction. Comparison of these variants indicates that each is probably assembled by the insertion of five different exon units in tandem into a discrete site within the membrane proximal region of the extracellular domain. One of the variants contains an exon that shares extensive amino acid sequence homology with a recently described rat CD44 variant that mediates tumor metastasis. Another variant contains a new exon that encodes a tandem repeat of the consensus sequence SG for covalent modification with chondroitin sulfate and is expressed predominantly on mammary tumors. We suggest that a mechanism of alternative exon splicing generates much of the observed structural heterogeneity of CD44 and that the particular set of CD44 variants expressed in a single cell may represent a precise postal code directing the final destination of migrating cells and metastatic tumors.  相似文献   

11.
Summary Keratinocytes and melanocytes, which together form units of structure and function within human epidermis, are known to differ in expression of autocrine growth factors, particularly those with heparin binding affinity. Because such cytokines could be regulated by the endogenous heparinlike glycosaminoglycan, heparan sulfate, proteoglycan synthesis was compared between human keratinocytes and melanocytes cultured from a common donor. Following steady-state isotopic labeling under conditions of active growth (low density cultures) and growth inhibition (high density cultures), the sulfated polymers were isolated from conditioned media and cell extracts. We found that keratinocytes produced substantially more sulfated glycosaminoglycans than did the melanocytes. There was no evidence for hyaluronic acid synthesis by the melanocytes. The majority of [35S]-sulfate labeling was in the heparan sulfates of the keratinocytes and in the chondroitin sulfates of the melanocytes. During the transition from active growth to growth inhibition, there was increased heparan sulfate proteoglycan and free chain synthesis by keratinocytes but not by melanocytes, and chondroitin sulfate proteoglycan production declined in both cell lineages. The differences may reflect divergent evolution as each cell type came to exploit those complex polysaccharides in different ways to regulate molecular pathways of growth and differentiation. The coupling of growth inhibition with augmented synthesis of heparan sulfates observed for the keratinocytes suggests a regulatory role in growth factor signaling in that cell type.  相似文献   

12.
Collagen XIV, a fibril-associated collagen with interrupted triple helices, is expressed in differentiated soft connective tissues and in cartilage. However, a cellular receptor for this protein has not been identified. Here we show that human placental collagen XIV, isolated by a mild and simple two-step method, serves as adhesive protein for a variety of mesenchymal and some epithelial cells. Cell adhesion could be inhibited by preincubation of the collagen XIV substrate with heparin or with the chondroitin/dermatan sulfate proteoglycan decorin and by pretreatment of cells with chondroitinase ABC or heparinase III, suggesting a cell membrane proteoglycan as receptor. Affinity chromatography of125I-labeled fibroblast cell surface proteins on collagen XIV–Sepharose yielded a chondroitin/dermatan sulfate proteoglycan with a molecular mass of 97–105 kDa after chondroitinase ABC digestion and of 60–70 kDa after further treatment withN-glycosidase F. The eluates contained also some high-molecular-weight material that was susceptible to digestion with heparinase but no detectable integrins. Immunoprecipitation with a specific monoclonal antibody identified the prominent chondroitin/dermatan sulfate proteoglycan as a member of the CD44 family. The interaction between collagen XIV and cells appears to be finely tuned, since matrix-associated glycosaminoglycans, and particularly proteoglycans like decorin, could compete with cells for the binding site(s) on collagen XIV under physiological conditions.  相似文献   

13.
We previously identified a 90-kD (GP90), collagen-binding, membrane glycoprotein, termed extracellular matrix receptor III (ECMR III), that is homologous to the lymphocyte homing receptor and CD44 antigen (Gallatin, W. M., E. A. Wayner, P. A. Hoffman, T. St. John, E. C. Butcher, and W. G. Carter. 1989. Proc. Natl. Acad. Sci. USA. 86:4654- 4658). CD44 is abundantly expressed in many epithelial tissues, and is localized predominantly to filopodia in cultured keratinocytes. Here we establish CD44 as a polymorphic family of related membrane proteoglycans and glycoproteins possessing extensive diversity in both glycosylation and core protein sequence. Human neonatal foreskin keratinocytes (HFKs) and QG56 lung squamous carcinoma cells express an alternatively spliced form of the CD44 core protein (termed CD44E) that contains an additional 132 amino acids in the carbohydrate attachment region of the extracellular domain. HFKs, HT1080 fibrosarcoma and QG56 cells, as well as many other human cells, contain varying ratios of GP90 and structurally related, higher molecular mass forms of CD44 that express the following characteristics: (a) each form reacted with anti- CD44 (mAbs) P1G12, P3H9, and P3H5. Each of these mAbs recognized a distinct, nonoverlapping epitope present on each CD44 form. (b) Differences in mass were due primarily to variation in carbohydrate moieties, including sulfated aspargine-linked glycopeptides (GP), chondroitin sulfate (CS), and heparan sulfate (HS) glycosaminoglycans, as well as O-linked mucin and polylactosamine structure(s). The major polymorphic forms were designated HT1080 GP90 and CS180, QG56 GP230, and HFK HS/CS250, based on dominant carbohydrate moieties and relative mass. (c) The polymorphic forms use CD44 and CD44E core proteins, each containing a unique set of potential attachment sites for O- and N- glycosides and glycosaminoglycans. (d) Immunofluorescence microscopy, differential extraction with Triton-X-114 detergent, and incorporation into liposomes indicated that all the forms were membrane bound glycoconjugates. These results define CD44 as a structurally diverse, but immunologically related, set of intrinsic membrane macromolecules, and suggests that these structurally varied forms might be expected to manifest multiple functions.  相似文献   

14.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO4 in the presence and absence of 1.0 mM p-nitrophenyl-β-D-xylose for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free chondroitin sulfate chains were measured following gel filtration on Sephadex G-200. Synthesis of β-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. The amount of core protein was determined from equivalent numbers of β-xyloside-treated and untreated cells by a radioimmune assay. Similar amounts of core protein were found in both types of cultures, indicating that decreased synthesis of cartilage-specific core protein is not responsible for the observed decrease in overall chondroitin sulfate proteoglycan production.  相似文献   

15.
The CD44 cell surface glycoprotein is expressed on a broad range of different tissues as multiple isoforms containing from one to ten alternatively spliced exons v1-v10 inserted within the extracellular domain. Differential glycosylation generates still further variability, yielding both N- and O-glycan-modified forms of CD44 in addition to proteoglycan-like variants containing chondroitin sulphate and heparan sulphate. These high molecular mass proteoglycan-like variants, previously identified in lymphocytes, melanomas, and keratinocytes have been implicated in cell-matrix adhesion, cell motility, and invasiveness. More recently, monocyte CD44 molecules presumed to carry glycosaminoglycan chains were shown to bind the chemokine MIP-1 beta (Tanaka, Y.,D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw. 1993. Nature (Lond). 361:79-82.) raising the intriguing possibility that proteoglycan-like CD44 variants might play a role in regulating inflammatory responses. Here we have investigated the molecular identity of these proteoglycan-like CD44 variants by generating a panel of recombinant CD44 isoforms using a novel cassette cloning strategy. We show that both chondroitin and heparan sulphate modifications are associated specifically with isoforms (CD44v3-10 and CD44v3,8-10) containing the v3 alternative exon which encodes a consensus motif SGXG for GAG addition. Other isoforms (CD44v10, CD44v8- 10, CD44v7-10, and CD44v6-10) are shown to lack these GAG chains but to carry extensive O-glycan modifications, most likely within the mucin- like alternative exon inserts. We also demonstrate that the majority of endogenous GAG-modified CD44 isoforms present in epithelial cells constitute v3 isoforms thus establishing that in these cells the majority of proteoglycan-like CD44 variants are generated by alternative splicing. Finally we present evidence using transfected B lymphoma cells that the GAG-modified CD44 isoforms CD44v3-10 and CD44v3,8-10, unlike CD44H, bind only weakly to hyaluronan. Together with the demonstration in the accompanying paper (Bennett, K., D. G. Jackson, J.C. Simon, E. Tanczos, R. Peach, B. Modrell, I. Stamenkovic, G. Plowman, and A. Aruffo. 1995. J. Cell Biol. 128:687-698.), that CD44 molecules containing the v3 exon bind growth factors, these results highlight a new and potentially important role for CD44 alternative splicing in the control of cell-surface proteoglycan expression.  相似文献   

16.
NG2 is a chondroitin sulfate proteoglycan that is expressed on dividing progenitor cells of several lineages including glia, muscle, and cartilage. It is an integral membrane proteoglycan with a core glycoprotein of 300 kDa. In the present study we have characterized three molecular forms of the NG2 core protein expressed by different cell lines. Many cell lines that express the full length 300-kDa NG2 core protein also release a 290-kDa form into the medium. This species lacks the cytoplasmic domain but contains almost the entire ectodomain. Two core protein species, the intact 300-kDa form and a truncated 275-kDa form, are expressed at the surface of an NG2-transfected cell line U251NG52. The 275-kDa species lacks the cytoplasmic domain and at least 64 amino acids of the ectodomain. Mild trypsinization of B49 cells also generates the 275-kDa species, suggesting that this component is produced by proteolysis of the 300-kDa form. Conversion of the 300-kDa species to the 275-kDa form in U251NG52 cells is stimulated by reagents such as phorbol esters, which activate protein kinase C. Phorbol esters are also known to induce expression of metalloproteinases such as collagenase and stromelysin, which could be responsible for cleavage of the 300-kDa core protein. Although B49 cells do not spontaneously produce the truncated 275-kDa species, use of monoclonal antibodies against NG2 to block the interaction between NG2 and type VI collagen results in the appearance of the 275-kDa component in these cells. Thus the interaction between NG2 and type VI collagen, which contains a Kunitz-type proteinase inhibitor sequence in the alpha 3 chain, may protect the proteoglycan against proteolysis. This is consistent with the observed deficiency of U251NG52 cells in anchoring type VI collagen at the surface.  相似文献   

17.
The rates of 35S-sulfate incorporation into proteoglycan were compared in multi-scratch wounded and confluent cultures of bovine aortic endothelial cells to determine whether proteoglycan synthesis is altered as cells are stimulated to migrate and proliferate. Incorporation was found to be stimulated in a time-dependent manner, reaching maximal levels 44-50 h after wounding, as cells migrated into wounded areas of the culture dish. Quantitative autoradiography of 35S-sulfate-labeled single-scratch wounded cultures demonstrated a 2-4-fold increase in the number of silver grains over migrating cells near the wound edge when compared to cells remote from the wound edge. Furthermore, when cell proliferation was blocked by inhibition of DNA synthesis, the increase in 35S-sulfate incorporation into proteoglycan after wounding was unaffected. These data indicate that cell division is not required for the modulation of proteoglycan synthesis to occur after wounding. Characterization of the newly synthesized proteoglycan by ion-exchange and molecular sieve chromatography demonstrated that heparan sulfate proteoglycan constitutes approximately 80% of the labeled proteoglycan in postconfluent cultures, while after wounding, chondroitin sulfate proteoglycan and/or dermatan sulfate proteoglycan (CS/DSPG) increases to as much as 60% of the total labeled proteoglycan. These results suggest that CS/DSPG synthesis is stimulated concomitant with the stimulation of endothelial cell migration after wounding.  相似文献   

18.
19.
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions.  相似文献   

20.
Transforming growth factor beta (TGF-beta) increases up to 20-fold the expression of various forms of chondroitin/dermatan sulfate proteoglycan, the major type of sulfated proteoglycan present in the extracellular matrix and culture medium of various human, rodent, and mink cell types including kidney and lung fibroblasts, lung epithelial cells, preadipocytes, and skeletal muscle myoblasts. TGF-beta regulates the level and molecular size of these proteoglycans by acting simultaneously at two levels: it elevates the biosynthetic rate of the 45-kDa proteoglycan core protein in a cycloheximide- and actinomycin D-sensitive manner, and it induces an increase in the molecular mass of the glycosaminoglycan chains. These cellular responses correlate with occupancy of type III TGF-beta receptors by TGF-beta 1 and TGF-beta 2 and are not induced by other growth factors tested. The parameters of this effect of TGF-beta in kidney fibroblasts and myoblasts are ED50 = 5-10 pM TGF-beta 1 or TGF-beta 2, and t 1/2 = 6-8 h. These results identify the chondroitin/dermatan sulfate proteoglycans as a major component of mammalian mesenchymal and epithelial extracellular matrices whose expression and structure are regulated by TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号