首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytosol of hepatopancreas was prepared from the freshwater prawn Macrobrachium malcolmsonii, and optimal assay conditions, i.e., concentration of substrate, pH, and temperature, were determined to measure basal activities and kinetic constants of catalase activity. The properties of catalase were examined in M. macolmsonii, because quantitative data on catalase are limited in crustacean species. The optimal pH for catalase was 7.0. The activation energy was 3.55 Kcal/mol and energy inhibition value was 5.16 Kcal/mol. The value of energy inhibition is higher than that of energy activation. This may be due to inhibition of catalase by some substrate other than H2O2. A Km of 66.6?mM was also determined from various concentrations of substrate.  相似文献   

2.
Oxidative stress stimulates production of hydrogen peroxide and organic hydroperoxides which are involved in lipid peroxidation and oxidative damage to protein. Glutathione peroxidase protects against oxidative stress. Quantitative data on glutathione peroxidase of crustaceans are very limited and so this study was performed to determine the assay condition of glutathione peroxidase in crustaceans. Particularly, some properties of hepatic selenium dependent glutathione peroxidase and total glutathione peroxidase of the freshwater prawn Macrobrachium malcolmsonii were examined. The optimal pH for Se-GSH-Px was 7.5 and for total GSH-Px was 8.0. The activation energy (Ea) was found to be 9.14 Kcal/mol for Se-GSH-Px and 10.96 Kcal/mol for total GSH-Px. The energy inhibition (Ei) value for Se-GSH-Px was 14.36 Kcal/mol and 13.71 Kcal/mol for total GSH-Px. The Km values were also determined at various concentrations of substrates (GSH, CHP, H2O2) for both enzymes.  相似文献   

3.
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.  相似文献   

4.
The detailed pH and temperature kinetics of human term placenta cysteinyl-tRNA synthetase (EC 6.1.1.16) were studied. The ATP-PPi exchange reaction catalyzed by the cysteinyl-tRNA synthetase was highly dependent on temperature, pH, and ionic strength. The Arrhenius plot at temperatures between 5 degrees and 40 degrees was linear, giving an activation energy of 19 +/- 2.5 Kcal/mol. The pH dependence of the kinetic parameters Km and Vmax was investigated. Apparent pKa value of 6.4 was observed in the pH-dependence of Vmax/Km plot. The pH versus Vmax plot showed two apparent pKa values of about 5.8 and 7.8. Van't Hoff's enthalpies were used to differentiate the nature of the possible groups responsible for the ionization. These results are valuable for the selection of chemical modifying reagents in characterizing the amino acid residues involved in substrate (nucleotide) binding or catalysis.  相似文献   

5.
A hydroperoxidase purified from the halophilic archaeon Halobacterium halobium exhibited both catalase and peroxidase activities, which were greatly diminished in a low-salt environment. Therefore, the purification was carried out in 2 M NaCl. Purified protein exhibited catalase activity over the narrow pH range of 6.0 to 7.5 and exhibited peroxidase activity between pH 6.5 and 8.0. Peroxidase activity was maximal at NaCl concentrations above 1 M, although catalase activity required 2 M NaCl for optimal function. Catalase activity was greatest at 50 degrees C; at 90 degrees C, the enzymatic activity was 20% greater than at 25 degrees C. Peroxidase activity decreased rapidly above its maximum at 40 degrees C. An activation energy of 2.5 kcal (ca. 10 kJ)/mol was calculated for catalase, and an activation energy of 4.0 kcal (ca. 17 kJ)/mol was calculated for peroxidase. Catalase activity was not inhibited by 3-amino-1,2,4-triazole but was inhibited by KCN and NaN3 (apparent Ki [KiApp] of 50 and 67.5 microM, respectively). Peroxidative activity was inhibited equally by KCN and NaN3 (KiApp for both, approximately 30 microM). The absorption spectrum showed a Soret peak at 404 nm, and there was no apparent reduction by dithionite. A heme content of 1.43 per tetramer was determined. The protein has a pI of 3.8 and an M(r) of 240,000 and consists of four subunits of 60,300 each.  相似文献   

6.
The formation of Compound I from Aspergillus niger catalase and methyl hydroperoxide (CH3OOH) has been investigated kinetically by means of rapid-scanning stopped-flow techniques. The spectral changes during the reaction showed distinct isobestic points. The second-order rate constant and the activation energy for the formation of Compound I were 6.4 x 10(3) M-1s-1 and 10.4 kcal.mol-1, respectively. After formation of Compound I, the absorbance at the Soret peak returned slowly to the level of ferric enzyme with a first-order rate constant of 1.7 x 10(-3) s-1. Spectrophotometric titration of the enzyme with CH3OOH indicates that 4 mol of peroxide react with 1 mol of enzyme to form 1 mol of Compound I. The amount of Compound I formed was proportional to the specific activity of the catalase. The irreversible inhibition of catalase by 3-amino-1,2,4-triazole (AT) was observed in the presence of CH3OOH or H2O2. The second-order rate constant of the catalase-AT formation in CH3OOH was 3.0 M-1 min-1 at 37 degrees C and pH 6.8 and the pKa value was estimated to be 6.10 from the pH profile of the rate constant of the AT-inhibition. These results indicate that A. niger catalase forms Compound I with the same properties as other catalases and peroxidases, but the velocity of the Compound I formation is lower than that of the others.  相似文献   

7.
It is of interest to document the molecular docking and dynamic simulations of benzimidazoles with beta-tubulins in the context of anthelmintic activity. We document the compound BI-02 (2-(3,4-dimethyl phenyl)-1H-1,3-benzimidazole (BI-02) with optimal bindig features compared to the standard molecule albendazole (7.0 Kcal/mol) with binding energy -8.50 Kcal/mol and PIC50 value 583.62 nM.  相似文献   

8.
Effects of pH and heat were examined on the activity of enzyme catalase from human sources (normal and pathological sera, tissue homogenates, purified catalases). The pH optimum, temperature optimum and T50 values of purified catalases were lower than those of normal, or pathological sera and tissue homogenates. On contrast, the activation energy showed its highest value in purified catalase. These findings might be explained by the post-translational modification of enzyme catalase. The obtained results failed to enhance the diagnostic role of serum catalase determination, nevertheless, gave the optimal values of pH and temperature for catalase assay.  相似文献   

9.
Background: Arabitol dehydrogenase (ArDH) is involved in the production of different sugar alcohols like arabitol, sorbitol, mannitol, erythritol and xylitol by using five carbon sugars as substrate. Arabinose, d-ribose, d-ribulose, xylose and d-xylulose are known substrate of this enzyme. ArDH is mainly produced by osmophilic fungi for the conversion of ribulose to arabitol under stress conditions. Recently this enzyme has been used by various industries for the production of pharmaceutically important sugar alcohols form cheap source than glucose. But the information at structure level as well as its binding energy analysis with different substrates was missing. Results: The present study was focused on sequence analysis, insilico characterization and substrate binding analysis of ArDH from a fungus specie candida albican. Sequence analysis and physicochemical properties showed that this protein is highly stable, negatively charged and having more hydrophilic regions, these properties made this enzyme to bind with number of five carbon sugars as substrate. The predicted 3D model will helpful for further structure based studies. Docking analysis provided free energies of binding of each substrate from a best pose as arabinose -9.8224calK/mol, dribose -11.3701Kcal/mol, d-ribulose -8.9230Kcal/mol, xylose -9.7007Kcal/mol and d-xylulose 9.7802Kcal/mol. Conclusion: Our study provided insight information of structure and interactions of ArDH with its substrate. These results obtained from this study clearly indicate that d-ribose is best substrate for ArDH for the production of sugar alcohols. This information will be helpful for better usage of this enzyme for hyper-production of sugar alcohols by different industries.  相似文献   

10.
Catalase from Bacillus sp. N2a (BNC) isolated from Antarctic seawater was purified to homogeneity. BNC has a molecular mass of about 230 kDa and is composed of four identical subunits of 56 kDa. The catalase showed optimal activity at 25 degrees C and at a pH range of 6-11. The enzyme could be inhibited by azide, hydroxylamine, and mercaptoethanol. These characteristics suggested that BNC is a small-subunit monofunctional catalase. The activation energy of BNC was 13 kJ/mol and the apparent kcat/Km values were 3.6 x 10(6) and 4 x 10(6) L.mol(-1).s(-1) at 4 and 25 degrees C, respectively. High catalytic efficiency of BNC at low temperatures enables this bacterium to scavenge H2O2 efficiently. BNC exhibited activation energy, catalytic efficiency, and thermostability comparable with some mesophilic homologues. Such similarity of enzymatic characteristics to mesophilic homologues, although uncommon among the cold-adapted enzymes in general, has also been observed in other psychrophilic small-subunit monofunctional catalases.  相似文献   

11.
The kinetic parameters of partially purified phenoloxidase (PO, EC. 1.14.18.1) from the 5th instar larvae of Pieris rapae (Lepidoptera) were determined, using L‐3, 4‐dihydroxyphenylalanine (L‐DOPA) as substrate. The optimal pH and temperature of the enzyme for the oxidation of L‐DOPA were determined to be at pH 7.0 and at 42°C, respectively. The enzyme was stable between pH 6.5 and 7.4 and at temperatures lower than 37°C. At pH 6.8 and 37°C, the Michaelis constant (Km) and maximal velocity (Vm) of the enzyme for the oxidation of L‐DOPA were determined to be 0.80 μmol/L and 1.84 μmol/ L/min, respectively. Tetra‐hexylresorcinol and 4‐dodecylresorcinol effectively inhibited activity of phenoloxidase and this inhibition was reversible and competitive, with the IC50 of 1.50 and 1.12 μmol/L, respectively. The inhibition constants were estimated to be 0.50 and 0.47 μmol/L, respectively.  相似文献   

12.
At temperatures between 45 and 50 C, staphylococcal acid phosphatase purified 44-fold had maximal activity at pH 5.2 to 5.3. However, the enzyme was most stable in the alkaline range (pH 8.5 to 9.5) at temperatures below 50 C. Iodoacetate and ethylenediamine-tetraacetic acid were effective inhibitors, whereas mercaptoethanol and Cu(2+) acted as stimulators. The energy of activation for hydrolytic cleavage of the synthetic substrate, p-nitrophenyl phosphate, was 19.5 Kcal/mole. K(m) for the same substrate was 4.5 x 10(-4)m. The purified enzyme was most active against the substrates p-nitrophenyl phosphate and glyceraldehyde 3-phosphate.  相似文献   

13.
The functional sites were predicted for Nudix enzymes from pathogenic microorganisms such as Streprococcus pneumonia (2B06) and Enterococcus faecalis (2AZW). Their structures are already determined, however, no data is reported about their functional sites, substrates and inhibitors. Therefore, we report prediction of functional sites in these Nudix enzymes via Geometric Invariant (GI) technique (Construct different geometries of peptides which remain unchanged). The GI method enumerated 2B06: RA57, EA58, EA61, EA62 and 2AZW: RA62, EA63, EA66, EA67 as putative functional sites in these Nudix enzymes. In addition, the substrate was predicted via Molecular docking (Docking of substrates against whole structure of Nudix enzymes). The substrate ADP-Ribose was docked with the Nudix enzymes, 2B06 (Docking energy -15.68 Kcal/mol) and 2AZW (Docking energy -10.86 Kcal/mol) with the higher affinity and the lower docking energy as compared to other substrates. The residues EA62 in 2B06 and RA62 in 2AZW make hydrogen bonds with the ADP-ribose. Furthermore, we screened 51 inhibitor compounds against structures of 2B06 and 2AZW. The inhibitor compounds AMPCPR and CID14258187 were docked well as compared to other compounds. The compound CID14258187 was also in agreement with Lipinski rule of 5 for drug likeness properties. Therefore, our findings of functional sites, substrates and inhibitors for these Nudix enzymes may help in structure based drug designing against Streprococcus pneumonia and Enterococcus faecalis.  相似文献   

14.
Aspergillus niger β-xylosidase was characterized when in soluble form and when immobilized to alkylamine porous silica with glutaraldehyde and to alumina with titanium tetrachloride. Energies of activation averaged 13.4 KcaL/mol for the soluble enzyme, 9.0 Kcal/mol when immobilized to alumina, and 8.0 Kcal/mol when bound to silica. The highest activity of all forms of β-xylosidase was found near pH 3. The soluble enzyme was highly stable at pH 4, where lowest rates of decay occurred, and temperature of 65°C and below. The decay rates of alumina-bound β-xylosidase and pH 4 and equivalent temperatures were approximately 10 times as high. Michaells constants were 0.200 and 0.262mM for o-nitrophenyl-β-D -xylopyranoside with soluble and alumina-bound β-xylosidase, respectively.  相似文献   

15.
A soluble inorganic pyrophosphatase from photolithoautotrophically grown Rhodopseudomonas palustris was purified to a state of apparent homogeneity applying high resolving liquid chromatography steps. Values of 65 500 and 64 500 were calculated for the relative molecular mass under non-dissociating conditions employing gel filtration and high-performance liquid chromatography, respectively. Dissociation sodium dodecyl sulfate gel electrophoresis resulted in a value of 32 000, indicating that the enzyme is composed of two subunits of equal molecular mass. Isoelectric focusing revealed a pI value of 4.7. The purified enzyme was specific for PPi and the activity was modified by divalent cations. Ca2+, Mn2+, Mg2+ and Co2+ were potent activators at a concentration ratio of [Me2+]/[PPi] less than 1. Ca2+ turned out to be the most potent activator. Free Me2+ was inhibitory on the PPiase activity. The (Me-PPi) complex is regarded as the functional substrate. Km and Ki values of the metal activation and inhibition were determined. An activation energy of Ea = 14.4 kJ/mol was derived from Arrhenius plots for the enzymatic reaction.  相似文献   

16.
A peroxidase has been purified to homogeneity from Astragalus maritimus seeds using ammonium sulfate precipitation and chromatography on DEAE-cellulose and hydroxylapatite. The purification obtained was 255 fold. The enzyme preparations were homogenous by the criteria of SDS-PAGE and analytical gel electrofocusing. The protein contained 0.11% of iron that corresponds to a minimum molecular size of 50,700. Determinations of molecular size by SDS-PAGE gave values of 48,000 +/- 1,000 while the one obtained by Sephadex gel filtration was 49,000. The pH optimum of the enzyme was 6.0. The activation energy was estimated to be 6 Kcal/mol. The prosthetic group was shown to be ferriprotoporphyrin IX. The presence of 13% neutral sugars was found. The spectrophotometric analysis showed the presence, in the visible region, of absorption maxima at 403, 490 and 633 nm. The Rz value (A403/A275) was 2.7.  相似文献   

17.
The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.  相似文献   

18.
A new fast assay procedure for increasing deoxyuridine triphosphate nucleotidohydrolase activity was developed. With this assay procedure, this enzyme derived from blast cells of patients with acute lymphocytic leukemia was purified at least 1218-fold. The molecular weight was estimated by gel filtration to be 43,000. The enzyme exhibited optimal activity over a pH range of 7 to 8 and the activation energy was estimated to be 6.5 kcal/mol at pH 7.5. While the enzyme had activity in the absence of added divalent cations, the activity could be inhibited by EDTA but not by phenanthroline. The inhibition caused by EDTA could be reversed by Mg2+ or Zn2+. The enzyme had maximal activity in the presence of Mg2+ (40 muM) and Mg2+ (4 mM) stabilized the enzyme at 37 degrees C. Cupric ion (0.5 mM) inhibited (50%) enzyme activity in the presence or absence of Mg2+. The substrate for the enzyme was dUTP and the apparent Km was 1 muM. No other deoxyribonucleoside or ribonucleoside triphosphate served as a substrate for the enzyme.  相似文献   

19.
The S-adenosyl-methionine: catechol-O-methyltransferase (EC 2.1.1.6) from rat kidney was purified about 650 fold as compared with the homogenate and the result of disc electrophoresis presented. The purification involved extraction, precipitation at pH 5, ammonium sulfate fractionation, Chromatographies on Biogel 0.5 m, Ultrogel AcA 44 and DE Sephadex A 50. Affinity chromatography was tried but unsuccessful. The enzyme exhibited two pH optima at 7.9 and 9.6 with a minimum at about 8.9. The COMT had a temperature optimum of 50 degrees C, with activation energy of 23.1 Kcal/Mole between 25-35 degrees C, 18.9 Kcal/mole between 35-45 degrees C and the Q10 within the range of 25-35 degrees amounted to 3.5. The molecular weight was estimated to be 21500+/-1000 daltons from its behavior on Ultrogel AcA 44 and the pH1 determined by electrofocalisation was near 5.50. The time of half life of the best purified enzymatic extract was found to be 2 h 10 min. at -20 degrees C. At basic pH the instability of the enzyme was increased. Since O-methylation required the presence of divalent cations, our results show that apparent Michaelis constants for Mg++ and Mn++ were respectively 0.50 X 10(-3) M and 0.33 X 10(-5) M. The study of their Hill's number indicated that there was only one point of fixation on the enzyme. The Km value determined by Florini and Vestling's method were 2.5 X 10(-4) M and 11.9 X 10(-5) M for epinephrine and S-adenosyl-methionine respectively. All results were discussed with respect to other investigations.  相似文献   

20.
The subunit MW of Dioscorea bulbifera polyphenol oxidase (MW 115 000 ± 2000) determined by SDS-PAGE is ca. 31 000 indicating that the enzyme is an oligomeric protein with four subunits. Ki values of various inhibitors and their modes of inhibition have been determined with catechol and pyrogallol as substrates. p-Nitrophenol, p-cresol, quinoline and resorcinol are competitive inhibitors of catechol binding while only orcinol and p-nitrophenol behave in the same way towards pyrogallol as substrate. From the effect of pH on Vmax, groups with pK values ca. 4.7 and 6.8 have been identified to be involved in catalytic activity. The Arrhenius activation energy (Ea) at pH 4.0 is 8.9 kcal/mol between 40–65°. At pH 7.0, the value is 22.1 kcal/mol between 40 and 60°. The enthalpies (ΔH) at pH 4.0 and pH 7.0 are 2.3 kcal/mol and 32.4 kcal/mol respectively. The results are discussed considering the conformational changes of the enzyme during substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号