首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have synthesized a panel of bivalent S-sialoside analogues, with modifications at the 4 position, as inhibitors of influenza virus. These first generation compounds show IC50 values ranging from low micromolar to high nanomolar in enzyme inhibition and plaque reduction assays with two intact viruses, Influenza H1N1 (A/California/07/2009) and H3N2 (A/Hongkong/8/68).  相似文献   

2.
The nucleoprotein (NP) of influenza virus is a multifunctional RNA binding protein. The role of NP in the adaptation of influenza viruses to a host has been experimentally proved. Ambiguous data are available on the role of nucleoprotein in the attenuation of influenza A viruses, which is characterized by ability to replicate at low temperature (26°C) and inability to replicate at high temperature (39°C). Influenza virus donor strain A/Hong Kong/1/68/162/35 (H3N2), adapted to growth at low temperature, differs from the wild type virus by 14 amino acid mutations in the internal and non-structural proteins. Two mutations occurred in the NP: Gly102Arg and Glu292Gly. We have obtained viruses with point reverse-mutations in these positions and compared their replication at different temperatures by measuring infectious activity in chicken embryos. It has been shown that reverse mutation Gly292Glu in the NP reduced virus ability to replicate at low temperature, the introduction of the second reverse mutation Arg102Gly completely abolished virus cold adaptation.  相似文献   

3.
Poliovirus isolates types 1 and 3 were obtained from five and seven successive passages respectively, in infants who had been fed monovalent OPV in two separate clinical trials conducted in 1960. The purpose of these trials was to answer the question how much the vaccine virus would revert to its original neurovirulent phenotype following multiplication in the intestinal tract. Human passages were performed either by contact exposure or by feeding the excreted virus while the infants were maintained in isolation. Several virus isolates were obtained at each passage level. Infants participating in both studies showed no symptoms of disease. Antigenic studies (McBride, van Wezel) and protein analysis (PAGE) of the isolates, reported earlier from this laboratory, had shown that the isolates remained vaccine-like, although isolates from the later passages revealed some differences. Monkey neurovirulence test results showed that for both types 1 and 3 viruses the loss of attenuation of the vaccine strain upon passage was gradual, although the loss was faster for type 3. Examination of the oligonucleotide maps demonstrated that the oligonucleotide configuration of the isolates remained the same as for the vaccine strain but there was an increase of individual spot differences with increasing passage. The nucleotide sequence analysis of selected regions of the virus genomes revealed that there was no change from a G to A in nucleotide 480 of type 1 isolates; however, nucleotide 476 changed from a U to an A in type 1 passages 3, 4 and 5. Conversely, for type 3 the change of nucleotide 472 from a U to a C changed at the early first passage (4 days following administration of OPV), and remained a C in the six following passages; type 3 nucleotide 2034 did not change in the first passage from a U to a C, but it became a C in all further passages tested. The nucleotide changes mentioned for both virus types remained stable in successive passages. However, there was another nucleotide change for type 3 from a U to a C at position 1973 only for passages 5 and 6 which reverted to a U for passages 7L and 7LL. Study of selected human passage virus strains could further contribute to the identification of the critical nucleotides that are responsible for the attenuation of these two polio types of vaccine viruses.  相似文献   

4.
A newly established cell line, GK, derived from the kidney tissue of Mongolian gerbils, produced plaques by infection of prototype and wild-type dengue virus strains. Both prototype and wild strains of type 2 virus grew in GK cells and formed plaques at 35.5 C and at 31 C, while types 1, 3, and 4 wild strains grew and formed plaques only at 31 C. In GK cells, plaque formation and the growth of dengue viruses depended on the high (35.5 C) and low (31 C) incubation temperatures. Virus yields in GK cells of all the 14 dengue virus strains tested, including four prototype and ten wild-type viruses, were 5 to 1,000-times lower than those in C6/36 cells. After five serial passages in GK cells, types 2, 3, and 4 prototype viruses and type 2 wild strain increased virus yields, and one strain of prototype virus and one strain of wild-type virus decreased mouse neurovirulence.  相似文献   

5.
Influenza A/H3N2/ virus strains derived from various isolations and replicated in lowered temperatures (37 degrees, 35 degrees, 33 degrees, 30 degrees) in chicken embryos were used for the study. An alteration of temperature optimum of neuraminidase activity was established after 12-15 passages of influenza virus in lowered replication temperature and it differed depending on tested strain. During adaptation process of viruses to lowered replication temperatures no correlation between neuraminidase activity and haemagglutinating titer was seen.  相似文献   

6.
A novel series of P1 modified HIV protease inhibitors was synthesized and evaluated for in vitro antiviral activity against wild-type virus and protease inhibitor-resistant viruses. Optimization of the P1 moiety resulted in compounds with femtomolar enzyme activities and cellular antiviral activities in the low nanomolar range culminating in the identification of clinical candidate GW0385.  相似文献   

7.
A single-gene reassortant bearing the PB2 gene of the A/Ann Arbor/6/60 cold-adapted virus in the background of the A/Korea/82 (H3N2) wild-type virus is a temperature-sensitive (ts) virus with an in vitro shutoff temperature of 38 degrees C. A single mutation at amino acid (aa) at 265 (Asp-Ser) of the PB2 protein is responsible for the ts phenotype. This ts single-gene PB2 reassortant virus was serially passaged at elevated temperatures in Madin-Darby canine kidney cells to generate ts+ phenotypic revertant viruses. Four ts+ phenotypically revertant viruses were derived independently, and each possessed a shutoff temperature for replication in vitro of > 40 degrees C. Each of the four phenotypically revertant viruses replicated efficiently in the upper and lower respiratory tracts of mice and hamsters, unlike the PB2 single-gene reassortant virus, confirming that the ts phenotype was responsible for the attenuation of this virus in rodents. Mating the ts+ revertants with wild-type virus yielded ts progeny in high frequency, indicating that the loss of ts phenotype was due to a suppressor mutation which was mapped to the PA gene in each of the four independently derived ts phenotypic revertants. Nucleotide sequence analysis confirmed the absence of new mutations on the PB2 gene and the presence of predicted amino acid changes in the PA proteins of the revertant viruses. These studies suggest that single amino acid changes at aa 245 (Glu-Lys) or 347 (Asp-Asn) of the PA protein can completely suppress the ts and attenuation phenotypes specified by the Asp-Ser mutation at aa 265 of the PB2 protein of the A/Ann Arbor/6/60 cold-adapted virus.  相似文献   

8.
Changes in structures of only two genes of influenza virus--M and NS genes were found during virus attenuation by the method of oligonucleotide mapping. Such changes were observed in virulent and attenuated viruses (passages 10-23 in chick embryos) by comparing intermediate variants of the virus (passages 11-16 in chick embryos). These results allow us to conclude the important role of these genes in virus attenuation and in connection with virulence of the virus.  相似文献   

9.
Reassortant viruses which possessed the hemagglutinin and neuraminidase genes of wild-type human influenza A viruses and the remaining six RNA segments (internal genes) of the avian A/Pintail/Alberta/119/79 (H4N6) virus were previously found to be attenuated in humans. To study the genetic basis of this attenuation, we isolated influenza A/Pintail/79 X A/Washington/897/80 reassortant viruses which contained human influenza virus H3N2 surface glycoprotein genes and various combinations of avian or human influenza virus internal genes. Twenty-four reassortant viruses were isolated and first evaluated for infectivity in avian (primary chick kidney [PCK]) and mammalian (Madin-Darby canine kidney [MDCK]) tissue culture lines. Reassortant viruses with two specific constellations of viral polymerase genes exhibited a significant host range restriction of replication in mammalian (MDCK) tissue culture compared with that in avian (PCK) tissue culture. The viral polymerase genotype PB2-avian (A) virus, PB1-A virus, and PA-human (H) virus was associated with a 900-fold restriction, while the viral polymerase genotype PB2-H, PB1-A, and PA-H was associated with an 80,000-fold restriction of replication in MDCK compared with that in PCK. Fifteen reassortant viruses were subsequently evaluated for their level of replication in the respiratory tract of squirrel monkeys, and two genetic determinants of attenuation were identified. First, reassortant viruses which possessed the avian influenza virus nucleoprotein gene were as restricted in replication as a virus which possessed all six internal genes of the avian influenza A virus parent, indicating that the nucleoprotein gene is the major determinant of attenuation of avian-human A/Pintail/79 reassortant viruses for monkeys. Second, reassortant viruses which possessed the viral polymerase gene constellation of PB2-H, PB1-A, and PA-H, which was associated with the greater degree of host range restriction in vitro, were highly restricted in replication in monkeys. Since the avian-human influenza reassortant viruses which expressed either mode of attenuation in monkeys replicated to high titer in eggs and in PCK tissue culture, their failure to replicate efficiently in the respiratory epithelium of primates must be due to the failure of viral factors to interact with primate host cell factors. The implications of these findings for the development of live-virus vaccines and for the evolution of influenza A viruses in nature are discussed.  相似文献   

10.
The entry of fowl plague virus, and avian influenza A virus, into Madin- Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 degrees C, viruses bound to the cell surface but were not internalized. Binding was not greatly dependent on the pH of the medium and reached an equilibrium level in 60-90 min. Over 90% of the bound viruses were removed by neuraminidase but not by proteases. When cells with prebound virus were warmed to 37 degrees C, part of the virus became resistant to removal b neuraminidase, with a half-time of 10-15 min. After a brief lag period, degraded viral material was released into the medium. The neuraminidase- resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride, a lysosomotropic agent, blocked both the infection and the degradation of viral protein. When the entry process was observed by electron microscopy, viruses were seen bound primarily to microvilli on the cell surface at 0 degrees C and, after warming at 37 degrees C, were endocytosed in coated pits, coated vesicles, and large smooth-surfaced vacuoles. Viruses were also present in smooth-surfaced invaginations and small smooth-surfaced vesicles at both temperatures. At physiological pH, no fusion of the virus with the plasma membrane was observed. When prebound virus was incubated at a pH of 5.5 or below for 1 min at 37 degrees C, fusion was, however, detected by ferritin immunolabeling. t low multiplicity, 90% of the prebound virus became neuraminidase- resistant and was presumably fused after only 30 s at low pH. These experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm. The entry pathway of fowl plague virus thus resembles tht earlier described for Semliki Forest virus.  相似文献   

11.
WSN (H0N1) influenza virus upon undiluted passages in different species of cells, namely, bovine kidney (MDBK), chicken embryo (CEF), and HeLa cells, produced a varying amount of defective interfering (DI) virus which correlated well with the ability of the species of cell to produce infectious virus. However, the nature of the influenza DI viral RNA produced from a single clonal stock was essentially identical in all three cells types, suggesting that these cells do not exert a great selective pressure in the amplification of specific DI viral RNAs either at early or late passages. DI viruses produced from one subtype (H0N1) could interfere with the replication of infectious viruses belonging to other subtypes (H1N1, H3N2). DI viral RNAs could also replicate with the helper function of other subtype viruses. The persistent infection of MDBK and HeLa cells could be initiated by coinfecting cells with both temperature-sensitive mutants (ts-) and DI influenza viruses. Persistently infected cultures cultures at early passages (up to passage 7) showed a cyclical pattern of cell lysis and virus production (crisis), whereas, at later passages (after passage 20), they produced little or no virus and were resistant to infection by homologous virus but not by heterologous virus. The majority of persistently infected cells, however, contained the complete viral genome since they expressed viral antigens and produced infectious centers. Selection of a slow-growing temperature-sensitive variant rather than the presence of DI virus or interferon appears to be critical in maintaining persistent influenza infection in these cells.  相似文献   

12.
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.  相似文献   

13.
H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.  相似文献   

14.
The neuraminidase (NA) genes of A(H1N1)pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS) from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y) and the other in 2011 (S247N). This study revealed a low prevalence of resistant viruses (0.8%) with no spread of the resistant mutants throughout RS.  相似文献   

15.
The origin and characteristics of the first naturally occurring temperature-sensitive (ts) strain of influenza A virus identified in 1973, Xia-ts, are described. Natural ts strains were found to occur in the early egg passage material of all influenza A subtypes examined, but the proportion of ts virus varied from 8.3% for old H1N1 virus (1949 to 1957) to 82.4% for recent H3N2 virus (1979 to 1980). A number of strains were found to be composed of a mixture of ts and wild-type (ts+) particles. Six natural ts strains with different shutoff temperatures and one ts+ strain of the H1N1 subtype were tested in antibody-free volunteers. Strains with a shutoff temperature of 38 degrees C or lower caused very mild symptoms, whereas those with a shutoff temperature of 39 degrees C and the ts+ strain were much more reactogenic. By complementation tests against a set of prototype WSN ts mutants with a defined genetic lesion, the ts lesion of two H3N2 viruses (HK/8/68 and Xia-ts) was located on the NP gene and that of two H1N1 viruses (Tianjin/78/77 and Beijing/1/79) was located on the M protein gene. The present study demonstrates the widespread occurrence in nature of influenza viruses of different degrees of temperature sensitivity and presumably of different degrees of virulence.  相似文献   

16.
To determine if different algal viruses ( Phycodnaviridae ) share common patterns of seasonal abundance, quantitative PCR methods were developed and applied to monitor the abundances of three different viruses in Lake Ontario, Canada over 13 months. Throughout the year, the abundances of two different phycodnavirus polB gene fragments (LO1b-49 and LO1a-68) varied by more than two orders of magnitude, peaked during the autumn months, and were lowest during the summer. The seasonal abundance patterns of these two virus genes were similar and both were detected in almost every sample, but LO1b-49 was consistently an order of magnitude more abundant than LO1a-68. LO1b-49 reached a maximum abundance of 5413 ± 312 genes ml−1, whereas LO1a-68's abundance peaked at only 881 ± 113 genes ml−1. Another phycodnavirus polB fragment that was monitored (LO1b-16) was detected in only a few samples, but reached a higher maximum concentration (6771 ± 879 genes ml−1) than either LO1b-49 or LO1a-68. The results of this year-long investigation of virus gene abundances suggests that Lake Ontario's phycodnavirus community is composed of persistent viruses detectable throughout the year and transient viruses present in only a few sporadic samples. The results also suggest that some persistent algal viruses are able to survive at relatively low abundances through several seasons.  相似文献   

17.
We have previously described a strategy for the recovery of a synthetic influenza A virus wild-type (wt) PB2 gene (derived from influenza A/Ann Arbor/6/60 [AA] virus) into an infectious virus. It was possible to introduce an attenuating temperature-sensitive (ts) mutation at amino acid residue 265 of the AA wt PB2 gene and to rescue this mutant gene into infectious virus. Application of this new technology to influenza A virus vaccine development requires that multiple attenuating mutations be introduced to achieve a satisfactorily attenuated virus that retains the attenuation (att) phenotype following replication in vivo. In this report, we demonstrate that putative ts mutations at amino acids 112, 556, and 658 each indeed specify the ts and att phenotypes. Each of these mutations was introduced into a cDNA copy of the AA mutant mt265 PB2 gene to produce three double-mutant PB2 genes, each of which was rescued into an infectious virus. In general, the double-mutant PB2 transfectant viruses were more ts and attenuated in the lower respiratory tracts of hamsters than the single-mutant transfectant viruses, and the ts phenotype of two of three double-mutant PB2 transfectant viruses was stable even after prolonged replication in the upper respiratory tracts of immunocompromised mice. Two triple-mutant PB2 transfectant viruses with three predicted amino acid substitutions resulting from five nucleotide substitutions in the cDNA were then generated. The triple-mutant PB2 transfectant viruses were more ts and more attenuated than the double-mutant PB2 transfectant viruses. These results indicate that sequential introduction of additional ts mutations into the PB2 gene can yield mutants that exhibit a stepwise increase in temperature sensitivity and attenuation compared with the preceding mutant(s) in the series. Furthermore, the level of temperature sensitivity of the transfectant viruses correlated significantly with the level of attenuation of these viruses in hamsters. Although the triple-mutant PB2 transfectant viruses were attenuated in hamsters, intranasal administration of these viruses elicited a vigorous serum hemagglutination-inhibiting antibody response, and this was associated with resistance of the lower respiratory tract to subsequent wt virus challenge. These observations suggest the feasibility of using PB2 reverse genetics to generate a live influenza A virus vaccine donor strain that contains three attenuating mutations in one gene. It is predicted that reassortant viruses derived from such a donor virus would have the properties of attenuation, genetic stability, immunogenicity, and protective efficacy against challenge with wt virus.  相似文献   

18.
Enhancement of cell death is a distinguishing feature of H1N1 influenza virus A/Puerto Rico/8/34 protein PB1-F2. Comparing the sequences (amino acids [aa] 61 to 87 using PB1-F2 amino acid numbering) of the PB1-F2-derived C-terminal peptides from influenza A viruses inducing high or low levels of cell death, we identified a unique I68, L69, and V70 motif in A/Puerto Rico/8/34 PB1-F2 responsible for promotion of the peptide''s cytotoxicity and permeabilization of the mitochondrial membrane. When administered to mice, a 27-mer PB1-F2-derived C-terminal peptide with this amino acid motif caused significantly greater weight loss and pulmonary inflammation than the peptide without it (due to I68T, L69Q, and V70G mutations). Similar to the wild-type peptide, A/Puerto Rico/8/34 elicited significantly higher levels of macrophages, neutrophils, and cytokines in the bronchoalveolar lavage fluid of mice than its mutant counterpart 7 days after infection. Additionally, infection of mice with A/Puerto Rico/8/34 significantly enhanced the levels of morphologically transformed epithelial and immune mononuclear cells recruited in the airways compared with the mutant virus. In the mouse bacterial superinfection model, both peptide and virus with the I68, L69, and V70 sequence accelerated development of pneumococcal pneumonia, as reflected by increased levels of viral and bacterial lung titers and by greater mortality. Here we provide evidence suggesting that the newly identified cytotoxic sequence I68, L69, and V70 of A/Puerto Rico/8/34 PB1-F2 contributes to the pathogenesis of both primary viral and secondary bacterial infections.  相似文献   

19.
Since the transmission of pathogenic viruses via water is indistinguishable from the transmission via other routes and since the levels in drinking water, although significant for health, may be too low for detection, quantitative viral risk assessment is a useful tool for assessing disease risk due to consumption of drinking water. Quantitative viral risk assessment requires information concerning the ability of viruses detected in drinking water to infect their host. To obtain insight into the infectivity of viruses in relation to the presence of virus genomes, inactivation of three different enteroviruses in artificial ground and surface waters under different controlled pH, temperature, and salt conditions was studied by using both PCR and cell culture over time. In salt-peptone medium, the estimated ratio of RNA genomes to infectious poliovirus 1 in freshly prepared suspensions was about 100. At 4°C this ratio was 103 after 600 days, and at 22°C it was 104 after 200 days. For poliovirus 1 and 2 the RNA/infectious virus ratio was higher in artificial groundwater than in artificial surface water, but this was not the case for coxsackievirus B4. When molecular detection is used for virus enumeration, it is important that the fraction of infectious virus (based on all virus genomes detected) decays with time, especially at temperatures near 22°C.  相似文献   

20.
Resistance against proteolysis enzymes, detergents and chemical group-specific reagents has been compared for the neuraminidase and hemagglutinin of influenza virus replicated at low temperature and original strain replicated at 37 degrees C before and after passage in the susceptible animal organism - cotton rat. Our study indicated great differences between strains and temperature conditions to resistance of the neuraminidase and hemaglutinin to proteolytic enzymes, detergens and chemical group specific reagents. No differences was found for sensitivity of influenza virus replicated at low temperature before and after passages for 3 strains -A/Pol/L/71, A/Phil/2/82, A/Pol/79/85 which are really cold adapted viruses. On the other hand neuraminidase of this strains was more resistance to these treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号