首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial hexokinase from small-intestinal mucosa and brain   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The submitochondrial localization of hexokinase activity in preparations of mitochondria from the small intestine of the guinea pig was studied by conventional methods. 2. Hexokinase activity in this tissue was predominantly associated with the outer mitochondrial membrane. 3. The inactivation of mitochondrial enzymes by trypsin in iso-osmotic and hypo-osmotic conditions was also used to determine the submitochondrial localization of hexokinase activity. 4. Hexokinase activity was found to be on the outside of the outer mitochondrial membrane. 5. It was shown that both type I and type II hexokinase activities are bound to the outside of the outer mitochondrial membrane. The types are present in the same ratio as that in which they occur in the cytosol of the cell. 6. Mitochondrial hexokinase from the small intestine did not show the latency phenomenon demonstrated by mitochondrial hexokinase from brain when subjected to a variety of treatments. However, hexokinase activity was solubilized from preparations of mitochondria from the small intestine by the same treatments as for mitochondrial hexokinase from brain. 7. The submitochondrial distribution of hexokinase activity in mitochondrial preparations from rat brain was determined by the trypsin inactivation method. 8. Hexokinase activity in preparations of mitochondria from rat brain was found on the outside of the outer membrane, between the mitochondrial membranes, and within the inner mitochondrial membrane. 9. Hexokinase from rat brain showed latency properties irrespective of its submitochondrial location.  相似文献   

2.
The gut mucosal surface is efficiently protected by Abs, and this site represents one of the richest compartments of Ab-secreting cells in the body. A simple and effective method to generate Ag-specific human monoclonal Abs (hmAbs) from such cells is lacking. In this paper, we describe a method to generate hmAbs from single Ag-specific IgA- or IgM-secreting cells of the intestinal mucosa. We found that CD138-positive plasma cells from the duodenum expressed surface IgA or IgM. Using eGFP-labeled virus-like particles, we harnessed the surface Ig expression to detect rotavirus-specific plasma cells at low frequency (0.03-0.35%) in 9 of 10 adult subjects. Single cells were isolated by FACS, and as they were viable, further testing of secreted Abs by ELISPOT and ELISA indicated a highly specific selection procedure. Ab genes from single cells of three donors were cloned, sequenced, and expressed as recombinant hmAbs. Of 26 cloned H chain Ab genes, 22 were IgA and 4 were IgM. The genes were highly mutated, and there was an overrepresentation of the VH4 family. Of 10 expressed hmAbs, 8 were rotavirus-reactive (6 with K(d) < 1 × 10(-10)). Importantly, our method allows generation of hmAbs from cells implicated in the protection of mucosal surfaces, and it can potentially be used in passive vaccination efforts and for discovery of epitopes directly relevant to human immunity.  相似文献   

3.
Metabolism of exogenous glutathione was investigated in suspensions of freshly isolated rat small-intestinal mucosal cells. The cells catalyzed the oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG). Neither serine . borate nor methionine significantly influenced this reaction. Formed GSSG was further metabolized as indicated by its disappearance from the medium. Degradation of GSSG was stimulated by methionine and inhibited by serine . borate. Separation and identification of GSSG metabolites were achieved by high performance liquid chromatography. The results indicate that the preferred route for GSSG metabolism to the constituent amino acids in small intestine, is by hydrolytic removal of the two gamma-glutamyl groups of GSSG to yield cystinyl-bisglycine which is subsequently hydrolyzed to cystine. gamma-Glutamyltransferase activity was compared in isolated intestinal, kidney and liver cells using gamma-glutamyl-p-nitrocarboxyanilide as substrate. Kidney cells were approximately 5-fold and 150-fold more active than intestinal and liver cells, respectively. Serine . borate markedly inhibited, and glycyl-glycine stimulated, hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide in all cell types confirming the involvement of gamma-glutamyltransferase in the reaction. The hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide was inhibited to approximately the same extent by either GSH or GSSG suggesting that both compounds interact at the donor site of gamma-glutamyltransferase. Comparison of the rates of glutathione metabolism by isolated intestinal and kidney cells suggests that the intestinal contribution to the degradation of extracellular glutathione may be physiologically more important than has previously been assumed.  相似文献   

4.
Prior studies have demonstrated that glucocorticoids can influence the structure and function of several different organs, including the small intestine. However, to date, the effects of glucocorticoids on the glycosphingolipids of the rat small intestinal mucosa have not been examined. In the present experiments, male albino rats of the Sherman strain were subcutaneously administered dexamethasone (100 micrograms/100 g body wt. per day) or diluent for 4 days, and the ceramide, acidic and neutral glycosphingolipid compositions of the proximal small intestine of these animals were examined and compared. The results of these studies demonstrate that dexamethasone administration: (1) increased the content and relative percentage of hematoside (GM3) in this tissue; (2) increased the percentage of N-glycoylneuraminic acid of hematoside; (3) decreased the percentage of the long-chain base phytosphingosine of hematoside, glucosyl- and globotriaosylceramide; and (4) did not appear to influence significantly the concentration of the neutral glycosphingolipids or ceramide in this tissue. These data, therefore, indicate that dexamethasone administration induces alterations in the glycosphingolipids, particularly hematoside, of rat small-intestinal mucosa.  相似文献   

5.
6.
Phospholipid-deacylating enzymes of rat stomach mucosa   总被引:3,自引:0,他引:3  
1. Rat stomach mucosa exhibited three distinguishable phospholipid-deacylating enzyme activities: lysophospholipase, phospholipase A1 and phospholipase A2. 2. The lysophospholipase hydrolyzed 1-palmitoyl lysophosphatidylcholine to free fatty acid and glycerophosphorylcholine. This enzyme had an optimum pH of 8.0, was heat labile, did not require Ca2+ for maximum activity and was not inhibited by bile salts or buffers of high ionic strength. 3. Phospholipase A2 and phospholipase A1 deacylated dipalmitoyl phophatidylcholine to the corresponding lyso compound and free fatty acid. The specific activity of phospholipase A2 was 2--4-fold higher than that of phospholipase A1 under all the conditions tested. Both activities were enhanced 4--7.5-fold in the presence of bile salts at alkaline pH and 11-18-fold at acidic pH. 4. In the absence of bile salts, phospholipase A1 exhibited pH optima at 6.5 and 9.5 and phospholipase A2 at pH 6.5, 8.0 and 9.5. The pH optima for phospholipase A1 were shifted to pH 3.0, 6.0 and 9.0 in presence of sodium taurocholate; the activity was detected only at a single pH of 9.5 in the presence of sodium deoxycholate and at pH 10.0 in the presence of sodium glycocholate. Phospholipase A2 optimum activity was displayed at pH 3.0, 6.0 and 8.0 in presence of taurocholage, pH 7.5 and 9.0, in presence of glycocholate and only at pH 9.0 in presence of deoxycholate. 5. Ca2+ was essential for optimum activity of phospholipases A1 and A2. But phospholipase A1 lost complete activity in presence of 0.5 mM ethyleneglycolbis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) at pH 6.0, whereas phospholipase A2 lost only 50%. 6. Phospholipases A1 and A2 retained about 50% of their activities by heating at 75 degrees for 10 min. At 100 degrees, phospholipase A1 retained 22% of its activity, whereas phospholipase A2 retained only 7%.  相似文献   

7.
Cation transport in vesicles from secreting rabbit stomach   总被引:1,自引:0,他引:1  
K+ gradient-dependent rubidium flux in vesicles obtained from stimulated rabbit stomach distinguishes two cation pathways. Selective inhibition by vanadate and the (1,2-alpha)-imidazopyridine, SCH 28080 identifies one pathway as H,K-ATPase-mediated passive cation exchange. A second pathway, additive to the first, is inhibited by the protonophore, tetrachlorosalicylanilide and is identified as a K+ conductance pathway present in these vesicles. The conductance was limited to vesicle populations obtained from the stimulated rabbit gastric mucosa and was distributed into both a light microsomal fraction and a heavier membrane fraction. 86Rb+ transport through the cation conductance exhibited a trans-stimulated cation selectivity sequence of K+ greater than Rb+ = Cs+ much greater than Li+. Potential sensitive flux was inhibited by the cyanine dye 3,3'-dipropyl-2,2'-thiodicarbo cyanine iodide, Ba2+, quinine, and the guanidinium compound 1,8-bis-guanidinium-n-octane. The presence of the conductance was correlated with K+-dependent H+ transport which did not require prolonged equilibration in K+ medium for activation. A role for the stimulus-dependent K+ conductance in gastric acid secretion could be its provision of a pathway for net K+ movement to the luminal site of the H,K-ATPase.  相似文献   

8.
9.
Lactate dehydrogenase has been measured in the small-intestinal mucosa in order to assess its value as a marker for the effects of ischemia and of reperfusion. The decrease in specific activity of the enzyme illustrates the deleterious effect of reperfusion on the quality of the remaining epithelial cells. However, this parameter fails to detect the loss of epithelial cells, which is the major event during ischemia as well as during reperfusion. In contrast, the expression of enzyme activity per g protein of the underlying intestinal muscle allowed us, in addition, to assess quantitatively the loss of epithelial cells, in good agreement with the histological data.  相似文献   

10.
11.
1. The activities of some enzymes of glycerolipid synthesis were measured in homogenates obtained from the intestinal scrapings of 62-66-day foetuses and 2- and 8-day-old guinea pigs. 2. The ratio of protein concentration/DNA concentration was significantly higher (P greater than 0.001) in homogenized tissue from the neonatal compared with the foetal guinea pigs. Enzyme activities were therefore expressed relative to both protein and to DNA. 3. The specific activities (relative to DNA) of palmitoyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were higher in homogenized tissues from neonatal than in those from the foetal guinea pigs. These activities are probably involved more in cell proliferation than in the absorption and transport of triacylglycerol. Its activity was not significantly different in the foetal and neonatal guinea pigs when expressed relative to DNA but it was lower in the neonatal guinea pigs when expressed relative to protein. The entry of food into the intestine after birth is therefore not necessary for its activity.  相似文献   

12.
Different routes of Cd intake may influence the intestinal distribution of Cd, metallothionein (MT), and trace metals differently. Therefore, we compared the effects of parenteral and enteral administration of Cd on the distribution of trace metals and MT along the small intestine. In a first experiment three groups of rats were employed: a control, one receiving CdCl2 within the drinking water, and another receiving sc injections of CdCl2. In a second experiment, rats were fed three different diets with either 0, 0.3, or 1 mmol CdCl2/kg for one and two weeks to study the time- and dose-dependent effects of orally administered Cd. Metal concentrations (Cd, Zn, Cu, Fe) were measured by atomic emission spectrometry and MT was determined by radioimmunoassay. Intestinal MT levels did not show proximodistal gradients in controls or after sc administration of Cd, but orally administered Cd increased mucosal MT levels longitudinally from the duodenum to the ileum. Cd levels paralleled those of MT. Compared with the metal concentrations in the controls, sc administration of Cd did not change intestinal Zn, Cu, and Fe levels. Oral administration of Cd, however, increased Cu and decreased Fe levels in the intestinal mucosa significantly. The second experiment revealed that only high dietary concentrations of Cd increase intestinal Cd and MT levels longitudinally toward the distal parts, whereas at lower dietary concentration the longitudinal distribution was reversed. This shows that different routes and doses of Cd intake lead to a different trace metal and MT distribution and emphasizes the role of dietary Cd in the local induction of small-intestinal MT.  相似文献   

13.
DNA damage in the pyloric mucosa of the stomach of male F344 rats was determined by the alkaline elution method after administration of glyoxal, a direct-acting mutagen present in various heated foods, by gastric intubation. Glyoxal at doses of 50-550 mg/kg body weight induced DNA damage in the pyloric mucosa of rat stomach, detected by a 5- to 12-fold increase in the elution rate constant 2 h after its administration. N-Methyl-N'-nitro-N-nitrosoguanidine, a glandular stomach carcinogen, used as a positive control at doses of 1-100 mg/kg body weight induced a 11- to 24-fold increase in the elution rate constant, while 2-acetylaminofluorene, which is not a gastric carcinogen, given as a negative control at doses of 200-400 mg/kg body weight did not increase the elution rate constant. Thus glyoxal, which was previously suggested to induce unscheduled DNA synthesis in the pyloric mucosa of rat stomach, was confirmed to be genotoxic in this region.  相似文献   

14.
15.
K Ishikawa  Y Satoh  H Tanaka  K Ono 《Acta anatomica》1986,127(4):296-302
Germ-free rats were inoculated with microbial flora from feces of conventionally reared rats and the mucosal structure was quantitatively observed at different time intervals after the inoculation and at different regions of the small intestine. In the ileum, desquamation figures were frequently seen on the villus tip, and several parameters of the mucosal elements, i.e., villus and crypt lengths, mitotic figures, goblet cells and thickness of lamina propria were significantly increased after the inoculation. On the other hand, in the duodenum and jejunum, such parameters except for the lamina propria showed no remarkable change during the course of the experiment, though the villus/crypt ratio increased temporarily at half a day after the inoculation. These regional differences of the mucosal response to the inoculation may be due to the different populations of microbial flora which settled in each region of the small intestine.  相似文献   

16.
Dispersed mucosal cells (approx. 70% parietal cells) prepared from guinea pig stomach maintained their cellular concentration of potassium (65--80 nmol potassium/10(6) cells) for at least 5 h in vitro. Uptake of 42K by dispersed gastric mucosal cells depended on temperature, H+ concentration and oxidative metabolism. Carbachol and, in some instances, gastrin caused a 40--50% increase in cellular uptake of 42K as a consequence of the ability of these agents to increase 42K influx. Ouabain reduced uptake of 42K by 70% but did not alter the effect of carbachol. Cellular uptake of 42K was not altered by histamine, prostaglandin, E1, glucagon, secretin, vasoactive intestinal peptide or C-terminal octapeptide of cholecystokinin. Uptake of 42K was also increased by dibutyryl cyclic AMP or dibutyryl cyclic GMP but not by cyclic AMP, cyclic GMP or their 8-bromo derivatives. Theophylline caused a small (10--15%) increase in 42K uptake and potentiated the increase caused by submaximal concentrations of carbachol. The increase in 42K uptake caused by either dibutyryl cyclic nucleotide and carbachol was additive.  相似文献   

17.
This study was conducted to test the hypothesis that different dietary Met levels affect small-intestinal mucosal integrity in post-weaning piglets. Two groups of piglets (n = 6/group) were weaned at 28 days of age and randomly allotted to a basal diet (without extra Met supplementation) or a Met-supplemented diet (with 0.12 % l-Met) for 14 days. The standardized ileal digestible (SID) Met levels were 0.24 and 0.35 %, respectively. At days 7 and 14 of the trial, venous blood samples were obtained from piglets, followed by their euthanasia for tissue collection. Piglets fed the diet supplemented with l-Met had a higher average daily gain during days 7–14 and improved feed efficiency during the entire period. Concentrations of sulfur amino acids (SAA), glutamate acid (Glu), glutamine (Gln), and taurine in the plasma and tissues were higher for the piglets in the Met-supplemented group. Met supplementation increased cysteine (Cys) and glutathione (GSH) concentrations in the plasma and tissues, leading to reductions in plasma Cys/CySS redox potential and tissue GSH/GSSH redox potential. The small-intestinal mucosa of Met-supplemented piglets exhibited improved villus architecture, compared with control piglets. Met supplementation increased transepithelial electrical resistance of the jejunal mucosa. Transport of Met, Gln and Cys across the jejunal mucosa did not differ between control and Met-supplemented piglets. The abundance occludin was higher, whereas the abundance of active caspase-3 was lower, in the jejunum of the Met-supplemented piglets. Collectively, adequate dietary Met is required for optimal protein synthesis and mucosal integrity in the small intestine of post-weaning piglets.  相似文献   

18.
Brain iron is a crucial participant and regulator of normal physiological activity. However, excess iron is involved in the formation of free radicals, and has been associated with oxidative damage to neuronal and other brain cells. Abnormally high brain iron levels have been observed in various neurodegenerative diseases, including neurodegeneration with brain iron accumulation, Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the key question of why iron levels increase in the relevant regions of the brain remains to be answered. A full understanding of the homeostatic mechanisms involved in brain iron transport and metabolism is therefore critical not only for elucidating the pathophysiological mechanisms responsible for excess iron accumulation in the brain but also for developing pharmacological interventions to disrupt the chain of pathological events occurring in these neurodegenerative diseases. Numerous studies have been conducted, but to date no effort to synthesize these studies and ideas into a systematic and coherent summary has been made, especially concerning iron transport across the luminal (apical) membrane of the capillary endothelium and the membranes of different brain cell types. Herein, we review key findings on brain iron transport, highlighting the mechanisms involved in iron transport across the luminal (apical) as well as the abluminal (basal) membrane of the blood–brain barrier, the blood–cerebrospinal fluid barrier, and iron uptake and release in neurons, oligodendrocytes, astrocytes and microglia within the brain. We offer suggestions for addressing the many important gaps in our understanding of this important topic, and provide new insights into the potential causes of abnormally increased iron levels in regions of the brain in neurodegenerative disorders.  相似文献   

19.
Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号