首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical localization of cathepsins B and H in rat liver   总被引:1,自引:0,他引:1  
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

2.
S Yokota  K Kato 《Histochemistry》1987,88(1):97-103
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

3.
Summary Localization of cathepsin L in rat kidney was investigated by immunocytochemical techniques. Kidneys were fixed by perfusion and embedded in Epon or Lowicryl K4M without postomication. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsin L were present in the cytoplasmic granules of proximal tubule cells, but little or no reaction product was noted in distal tubule, collecting tubule, and most of urinary tubules in the medulla. By EM, heavy gold label for cathepsin L was confined exclusively to lysosomes of the proximal tubule cells, but little or no label to those of the other segments. In immunocytochemical control sections, no reaction was observed. These results indicate that a main container of cathepsin L is lysosomes of the proximal tubule and suggest that the enzyme plays a role in the degradation of endocytosed proteins.  相似文献   

4.
Localization of cathepsin L in rat kidney was investigated by immunocytochemical techniques. Kidneys were fixed by perfusion and embedded in Epon or Lowicryl K4M without postosmication. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsin L were present in the cytoplasmic granules of proximal tubule cells, but little or no reaction product was noted in distal tubule, collecting tubule, and most of urinary tubules in the medulla. By EM, heavy gold label for cathepsin L was confined exclusively to lysosomes of the proximal tubule cells, but little or no label to those of the other segments. In immunocytochemical control sections, no reaction was observed. These results indicate that a main container of cathepsin L is lysosomes of the proximal tubule and suggest that the enzyme plays a role in the degradation of endocytosed proteins.  相似文献   

5.
Summary Localization of 2,4-dienoyl-CoA reductase (DCR) in rat liver was studied using immunoenzyme and immunogold techniques. The animals were fed on a laboratory diet with or without 2% di-(2-ethylhexyl)phthalate (DEHP), a peroxisome proliferator, for two weeks. For light microscopy (LM), semithin Epon sections were stained by immunoenzyme technique after removal of the epoxy resin. For electron microscopy (EM), ultrathin Lowicryl K4M sections were stained by the protein A-gold technique. By LM, in untreated rats reaction deposits showing the antigenic sites for DCR were present in the cytoplasmic granules. Hepatocytes, epithelial cells of interlobular bile duct, and sinus-lining cells contained these granules. After administration of DEHP, the cytoplasmic granules stained similarly. The staining intensity of the heaptocytes increased markedly, but that of the other cells decreased. The sinus-lining cells became mostly negative. By EM, gold particles indicating the antigenic sites for DCR were present in both the mitochondria and peroxisomes of hepatocytes of untreated rats. In the other cells, the gold label was confined to the mitochondria. After administration of DEHP, labelling intensity of the hepatocyte mitochondria increased markedly, but that of the peroxisomes conversely decreased. Quantitative analysis of labelling density showed that the mitochondrial DCR increased to about three times that in the untreated rat, but the peroxisomal DCR decreased to 1/6. The results show that in the rat liver, DCR exists in both, mitochondria and peroxisomes. DEHP can induce mitochondrial DCR, but not peroxisomal DCR.  相似文献   

6.
Light and electron microscopic localizations of D-amino acid oxidase (DAO) in rat kidney was investigated using immunoenzyme and protein A-gold techniques. The enzyme was purified from rat kidney homogenate and its antibody was raised in rabbits. By Ouchterlony double-diffusion analysis and immunoblot analysis with anti-(rat kidney DAO) immunoglobulin, the antibody was confirmed to be monospecific. The tissue sections (200 micron thick) of fixed rat kidney were embedded in Epon or Lowicryl K4M. Semi-thin sections were stained for DAO by the immunoenzyme technique after removal of epoxy resin for LM, and ultra-thin sections of Lowicryl-embedded material were labeled for DAO by the protein A-gold technique for EM. By LM, fine cytoplasmic granules of proximal tubule were stained exclusively. Among three segments of proximal tubules, and S2 and S3 segments were heavily stained but the S1 segment only weakly so. By EM, gold particles indicating the antigenic sites for DAO were exclusively confined to peroxisomes. Within peroxisomes, the gold particles were localized in the central clear matrix but not in the peripheral tubular substructures. The results indicate that D-amino acid oxidase in rat kidney is present exclusively in peroxisomes in the proximal tubule and that within peroxisomes it is found only in central clear matrix and not in the peripheral tubular substructures.  相似文献   

7.
Summary The light- and electron-microscopic localization of serine:pyruvate aminotransferase (SPT) in rat kidney was studied using immunoenzyme and protein A-gold techniques. Rat kidneys were fixed by perfusion through the abdominal aorta and small tissue slices were embedded in Epon, Lowicryl K4M, or LR Gold. The Epon was removed from the semithin sections, which were then stained using the immunoenzyme technique. Ultrathin sections of Lowicryl K4M- or LR gold-embedded materials were labeled using the protein A-gold technique. At light microscopy, discrete granular reaction deposits were exclusively present in the proximal tubule, all of whose segments were positive for SPT. A weakly positive reaction was observed in the distal tubules. At electron microscopy, gold particles indicating the antigenic sites for SPT were confined to the peroxisomes and mitochondria. The labeling intensity of both organelles was dependent on the embedding resins used. The labeling of Lowicryl K4M-embedded material was weaker than that of LR gold-embedded material; Quantitative analysis confirmed this result. Our results indicate that, in rat kidney, the main intracellular sites for SPT are peroxisomes and mitochondria of the proximal tubule.  相似文献   

8.
S Yokota  T Oda 《Histochemistry》1985,83(1):81-85
The light- and electron-microscopic localization of serine: pyruvate aminotransferase (SPT) in rat kidney was studied using immunoenzyme and protein A-gold techniques. Rat kidneys were fixed by perfusion through the abdominal aorta and small tissue slices were embedded in Epon, Lowicryl K4M, or LR Gold. The Epon was removed from the semithin sections, which were then stained using the immunoenzyme technique. Ultrathin sections of Lowicryl K4M- or LR gold-embedded materials were labeled using the protein A-gold technique. At light microscopy, discrete granular reaction deposits were exclusively present in the proximal tubule, all of whose segments were positive for SPT. A weakly positive reaction was observed in the distal tubules. At electron microscopy, gold particles indicating the antigenic sites for SPT were confined to the peroxisomes and mitochondria. The labeling intensity of both organelles was dependent on the embedding resins used. The labeling of Lowicryl K4M-embedded material was weaker than that of LR gold-embedded material; Quantitative analysis confirmed this result. Our results indicate that, in rat kidney, the main intracellular sites for SPT are peroxisomes and mitochondria of the proximal tubule.  相似文献   

9.
We investigated light and electron microscopic localization of ornithine transcarbamylase (OTC) in rat intestinal mucosa. In the immunoblotting assay of OTC-related protein, a single protein band with a molecular weight of about 36,500 is observed in extracts of liver and small intestinal mucosa but is not observed in those of stomach and large intestine. For light microscopy, tissue slices of the digestive system were embedded in Epon and stained by using anti-bovine OTC rabbit IgG and the immunoenzyme technique. For electron microscopy, slices of these and the liver tissues were embedded in Lowicryl K4M and stained by the protein A-gold technique. By light microscopy, the absorptive epithelial cells of duodenum, jejunum, and ileum stained positively for OTC, but stomach, large intestine, rectum, and propria mucosa of small intestine were not stained. Electron microscopy showed that gold particles representing the antigenic sites for OTC were confined to the mitochondrial matrix of hepatocytes and small intestinal epithelial cells. However, the enzyme was detected in mitochondria of neither liver endothelial cells, submucosal cells of small intestine, nor large intestinal epithelial cells. Labeling density of mitochondria in the absorptive epithelial cells of duodenum, jejunum, and ileum was about half of that in liver cells.  相似文献   

10.
The mouse monoclonal antibody anti-Leu-M1 (CD15) recognizes the carbohydrate determinant lacto-N-fucopentaose III, an oligosaccharide believed to be involved in cell-cell interactions. Anti-Leu-M1 is used in surgical pathology as an aid in the diagnosis of Hodgkin's disease. Additionally, adenocarcinomas derived from various organs stained positively with anti-Leu-M1 at the light microscopic level. Since mesotheliomas do not display positive reactivity to this antibody, Leu-M1 is clinically useful as part of a panel of antibodies in distinguishing adenocarcinomas from mesotheliomas. Previous work was carried out using post-embedding protein A-gold immunocytochemistry on thin sections embedded in Lowicryl K4M from a patient with Hodgkin's disease of the nodular sclerosing type; intense and precise labeling by gold particles was revealed in cytoplasmic granules, which were often clustered in a perinuclear location, in the Golgi apparatus, and focally along the plasma membrane of Reed-Sternberg cells. Moreover, polymorphonuclear leukocytes demonstrated similar labelling along the plasma membrane and over cytoplasmic granules. To define precisely the intracellular localization of Leu-M1 in human adenocarcinomas, we have performed post-embedding immunoelectron microscopy with the protein A-gold technique on sections embedded in Lowicryl K4M from neoplasms of the lung, stomach, colon, and breast. The pattern of labeling by gold particles indicative of Leu-M1 binding varied in adenocarcinomas of the different organs.  相似文献   

11.
Summary The electron microscopical localization of ornithine transcarbamylase in rat liver was investigated by a protein A—gold technique applied to thin sections of Lowicryl K4M- or LR gold-embedded materials and to ultracryosections. Gold particles were exclusively confined to mitochondria of the parenchymal cells but not of sinus-lining cells. In mitochondria, gold particles were present in the matrix and closely associated with the inner membrane. The most intensive labelling was obtained from ultracryosections, while weaker labelling was noted in sections of materials embedded in both Lowicryl K4M and LR gold. The association of the enzyme with the inner membrane was confirmed by quantitative analysis of distribution pattern.  相似文献   

12.
S Yokota  T Oda 《Histochemistry》1984,80(6):591-595
Immunocytochemical localization of serine:pyruvate aminotransferase (SPT) in rat hepatocytes was studied using a protein A-gold technique. Rat liver was fixed by perfusion. Vibratome sections (100 micron thick) of the liver were embedded in Epon or Lowicryl K4M. Ultrathin sections were incubated with antiSPT, followed by protein A-gold complex. Gold particles representing the antigenic sites for SPT were seen in three subcellular compartments, peroxisomes, mitochondria, and cytoplasm. In the control experiments the specificity of the immunolabelling was confirmed. Quantitative analysis of the labelling density showed that main subcellular compartments containing SPT are mitochondria and peroxisomes. In addition, the gold particles distributing in the cytoplasm were 16%-29% of the total labelling. The result indicated that the cytoplasm also contains SPT with a low density.  相似文献   

13.
Multiple correlative immunolabeling permits colocalization of molecular species for sequential observation of the same sample in light microscopy (LM) and electron microscopy (EM). This technique allows rapid evaluation of labeling via LM, prior to subsequent time-consuming preparation and observation with transmission electric microscopy (TEM). The procedure also yields two different complementary data sets. In LM, different fluorophores are distinguished by their respective excitation and emission wavelengths. In EM, colloidal metal nanoparticles of different elemental composition can be differentiated and mapped by energy-filtering transmission electron microscopy with electron spectroscopic imaging. For the highest level of spatial resolution in TEM, colloidal metal particles were conjugated directly to primary antibodies. For LM, fluorophores were conjugated to secondary antibodies, which did not affect the spatial resolution attainable by fluorescence microscopy but placed the fluorophore at a sufficient distance from the metal particle to limit quenching of the fluorescence signal. It also effectively kept the fluorophore at a sufficient distance from the colloidal metal particles, which resulted in limiting quenching of the fluorescent signal. Two well-defined model systems consisting of myosin and alpha-actinin bands of skeletal muscle tissue and also actin and alpha-actinin of human platelets in ultrathin Epon sections were labeled using both fluorophores (Cy2 and Cy3) as markers for LM and equally sized colloidal gold (cAu) and colloidal palladium (cPd) particles as reporters for TEM. Each sample was labeled by a mixture of conjugates or labels and observed by LM, then further processed for TEM.  相似文献   

14.
S Yokota  H Tsuji  K Kato 《Histochemistry》1986,85(3):223-230
Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For light microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

15.
Immunocytochemical localization of cathepsin H in rat kidney   总被引:1,自引:1,他引:0  
Summary Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For ligh microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

16.
Ultrastructural localization of growth hormone in rat anterior pituitary and of muscle-specific actin in rabbit arterial smooth muscle cells was accomplished with a post-embedment procedure using colloidal gold. Plastic sections (2 microns) were mounted on slides, deplasticized, immunostained with immunoglobulin-colloidal gold particles, re-embedded in Epon, and sectioned for electron microscopy. This procedure enabled light and electron microscopic localization of these intracellular antigens on the same section. Positive immunostaining was demonstrated with this procedure with a muscle-specific actin antibody which previously failed to localize antigenic sites by EM. The procedure described yielded staining of high specificity, with minimal background and well-preserved ultrastructure. This re-embedding technique is useful in situations where problems with post-embedding EM immunostaining exist and where correlative LM and EM immunostaining is essential.  相似文献   

17.
The recently developed low temperature embedding procedure with the resin Lowicryl K4M (Carlemalm E, Garavito M, Villiger W: Proc 7th Eur Cong Electron Microsc, 1980, p 656; Garavito M, Carlemalm E, Villiger W: Proc 7th Eur Cong Electron Microsc, 1980, p 658) was tested for its suitability for embedding of glutaraldehyde-fixed rat pancreatic tissue and for postembedding staining of thin sections with the protein A-gold (pAg) technique (Roth J, Bendayan M, Orci L: J Histochem Cytochem 26:1074, 1978) for amylase. Compared to conventional Epon embedding of glutaraldehyde fixed tissue, the low temperature embedding method with Lowicryl K4M resulted in a superior preservation of the general cellular fine structure, particularly in the Golgi apparatus. For low temperature embedded tissue, the quantitative evaluation of the immunocytochemical labeling for amylase showed a more specific staining of the rough endoplasmic reticulum, the Golgi apparatus, and the zymogen granules. This was due to a significant lowering of the background staining over all cellular organelles. The use of Lowicryl K4M at low temperature, due to the superior preservation, yields improved resolution and specificity in immunocytochemical postembedding staining.  相似文献   

18.
Immunoelectron microscopy of Saccharomyces cerevisiae cells embedded in Lowicryl K4M has been used to localize invertase and plasma membrane (PM) ATPase in secretory organelles. sec mutant cells incubated at 37 degrees C were prepared for electron microscopy, and thin sections were incubated with polyclonal antibodies, followed by decoration with protein A-gold. Specific labeling of invertase was seen in the lumen of the endoplasmic reticulum, Golgi apparatus, and secretory vesicles in mutant cells that exaggerate these organelles. PM ATPase accumulated within the same organelles. Double-immune labeling revealed that invertase and PM ATPase colocalized in secretory vesicles. These results strengthen the view that secretion and plasma membrane assembly are biosynthetically coupled in yeast.  相似文献   

19.
Summary Immunocytochemical localization of serine: pyruvate aminotransferase (SPT) in rat hepatocytes was studied using a protien A-gold technique. Rat liver was fixed by perfusion. Vibratome sections (100 m thick) of the liver were embedded in Epon or Lowicryl K4M. Ultrathin sections were incubated with antiSPT, followed by protein A-gold complex. Gold particles representing the antigenic sites for SPT were seen in three subcellular compartments, peroxisomes, mitochondria, and cytoplasm. In the control experiments the specificity of the immunolabelling was confirmed. Quantitative analysis of the labelling density showed that main subcellular compartments containing SPT are mitochondria and peroxisomes. In addition, the gold particles distributing in the cytoplasm were 16%–29% of the total labelling. The result indicated that the cytoplasm also contains SPT with a low density.  相似文献   

20.
Summary A method involving rapid freezing followed by substitution fixation was developed, using acrolein as a fixative. This was then applied to several cytochemical stainings, and showed well preserved and clear cell structures. Membranes were apparently negatively stained and the ultrastructure of mitochondria, rough endoplasmic reticulum and Golgi apparatus was clearly discernible. The mitochondrial and cytoplasmic matrices were stained rather densely compared with routine chemically fixed preparations, implying a good preservation of matrix substrances. Periodic acid-thiocarbohydrazide-silver proteinate staining was applied to the present method. The mucous granules of surface covering epithelial cells indicated fine staining of bipartite structure and the Golgi apparatus of mucous cells showed clear staining differences based on polarity. Postembedding lectin-ferritin and immunocytochemical stainings were applicable to the present preparations and stable stainings of secretory granules were obtained. A low temperature embedding material, Lowicryl K4M, was also examined. The cell preservation of these samples was not as good as those embedded in Epon, but the rough endoplasmic reticulum and Golgi apparatus of chief cells were stained with anti-pepsinogen antibody as were the secretory granules. The present method was also applicable to light microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号