首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-subunit of ATP synthase from mitochondria is a major component of the extrinsic membrane sector of the enzyme. It is encoded in nuclear DNA. A family of overlapping complementary DNA clones encoding its precursor has been isolated from a bovine library by using in the first instance a mixture of 128 synthetic oligonucleotides designed on the basis of the known protein sequence, and the sequence of the full-length cDNA has been determined. The deduced protein sequence shows that the alpha-subunit of ATP synthase has a presequence of 43 amino acids that is not present in the mature protein. Presumably it directs the protein into the mitochondrial matrix and is removed during the import process. The encoded protein sequence is also longer by one amino acid at its C-terminal end than the protein isolated from F1-ATPase, but this alanine residue may have been removed artifactually during release of the F1-ATPase particle from the inner mitochondrial membrane. With the exception of one uncertainty caused by an ambiguity at one position in the nucleotide sequence, the mature protein sequence encoded in the cDNA is exactly the same as the sequence determined previously by direct analysis of the protein isolated from bovine heart mitochondria [Walker et al. (1985) J. Mol. Biol. 184, 677-701]. The cDNA sequence differs in 158 nucleotides over a region of alignment of 1097 nucleotides from a partial cDNA for the alpha-subunit that has been isolated from a bovine cDNA derived from liver RNA [Breen (1988) Biochem. Biophys. Res. Commun. 152, 264-269].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The epsilon-subunit of ATP synthase from bovine heart mitochondria is assembled into the extrinsic membrane sector, F1-ATPase. The mature protein is 50 amino acid residues in length and its function is unknown. It is a nuclear gene product that is imported into the organelle. A mixture of 64 oligonucleotides 17 bases long, designed on the basis of the known protein sequence, was synthesized and used as a hybridization probe to isolate a cognate cDNA clone from a bovine library. The DNA sequence of this clone was determined, and the protein sequence of the epsilon-subunit deduced from it agrees exactly with that determined by direct sequence analysis of the protein isolated from bovine hearts. The bovine cDNA was used as a hybridization probe to examine the expression of the epsilon-subunit in various bovine tissues. mRNAs related to the cDNA are found in all of these tissues, and no evidence was obtained of the presence of mRNAs for the epsilon-subunit with similar coding sequences and dissimilar 3' non-coding regions. By hybridization experiments with digests of DNA from cow, man and rat it has been shown that sequences related to the bovine cDNA are present in the genomes of all three species. More than one related sequence was detected in all cases, indicating the presence in all three genomes of more than one gene and/or pseudogenes.  相似文献   

4.
The polypeptides exposed to lipids in the membranous F0 sector of the mitochondrial and Escherichia coli ATP synthases were labelled with radioactive photoreactive lipids. Highly resolving gel electrophoretic conditions were used in order to separate all the eighteen components forming the bovine heart mitochondrial enzyme. The hydrophobic labelling was performed on fully active and inhibitor-sensitive ATP synthases. In the mitochondrial enzyme prepared according to Serrano et al. (1976) [J. Biol. Chem. 251, 2453-2461] seven polypeptides of Mr 30500; 11500; 10500; 10000; 9500; 8500 and 4500 were labelled. The major amount of radioactivity was associated with the 30500-Mr component, which is thought to be the adenine nucleotide carrier. In the preparation of Galante et al., (1979) which almost completely lacks this component [J. Biol. Chem. 254, 12372-12378] nine polypeptides of Mr 25000; 21000; 11500; 10500; 10000; 9500; 9200; 8500 and 4500 were labelled. In the ATPase synthase from E. coli the major amount of labelling was associated with subunit b and only a minor portion with subunit c.  相似文献   

5.
ATP synthase, or F-ATPase, purified from bovine heart mitochondria in the absence of phospholipids is an assembly of 16 different subunits. In the presence of exogenous phospholipids, two additional hydrophobic proteins, a 6.8kDa proteolipid and diabetes associated protein in insulin sensitive tissue (DAPIT), were associated with the purified complex, with DAPIT at sub-stoichiometric levels. Both proteins are conserved in vertebrates and invertebrates, but not in fungi, and prokaryotic F-ATPases do not contain orthologues of either of them. Therefore, their roles are likely to be peripheral to the synthesis of ATP.  相似文献   

6.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

7.
J Miki  M Maeda  Y Mukohata  M Futai 《FEBS letters》1988,232(1):221-226
cDNA clones encoding the gamma-subunit of chloroplast ATP synthase were isolated from a spinach library using synthetic oligonucleotide probes. The predicted amino acid sequence indicated that the mature chloroplast gamma-subunit consists of 323 amino acid residues and is highly homologous (55% identical residues) with the sequence of the cyanobacterial subunit. The positions of the four cysteine residues were identified. The carboxyl-terminal region of the chloroplast gamma-subunit is highly homologous with those of the gamma-subunits from six other sources (bacteria and mitochondria) sequenced thus far.  相似文献   

8.
A new DNA polymerase activity, distinct from DNA polymerase gamma, has been identified in bovine heart mitochondria. First detected among proteins isolated in a complex with mitochondrial DNA, the DNA polymerase activity has been partially purified 47,000-fold. Enzyme activity separates from DNA polymerase gamma on several chromatographic columns and appears to copurify with a 38 +/- 2-kDa polypeptide. Unlike DNA polymerase gamma, this enzyme is relatively resistant to inhibition by N-ethylmaleimide and dideoxynucleotides, has moderately low monovalent and high divalent cation requirements, and possesses 20-fold-higher apparent K(m) values for deoxynucleotides. The enzyme polymerizes deoxynucleotides onto a primed template DNA in a relatively nonprocessive fashion and lacks a detectable 3' to 5' exonuclease activity. Many of these characteristics resemble a beta-like mitochondrial DNA polymerase previously identified in, and considered unique to, trypanosomes. We propose that the bovine and trypanosomal enzymes are related and represent a new class of ubiquitous mitochondrial DNA polymerases.  相似文献   

9.
The efficiency of phage DNA amplification by the method of polymerase chain reaction (PCR) with Tth DNA-polymerase was studied for optimization of PCR conditions. The effect on amplification efficiency of medium ionic strength and pH, the presence of univalent cations, detergents, gelatin, ATP, pyrophosphate, SH-reagents and ratio of concentrations of Mg and dNTPs, primers and template was studied. It has been found that a pH optimum for PCR with Tth DNA-polymerase varies from 8.5 to 9.0. An ionic strength optimum for PCR is about 0.08. The influence of univalent cations on the activity of Tth DNA-polymerase can be expressed as NH4+ greater than Na+ greater than K+. 0.01% Tween-20 significantly increases the efficiency of PCR and 0.01% gelatin inhibits it. Addition of ATP, pyrophosphate, SH-reagents to the reaction mixture did not increase the yield of PCR product. It has been also shown that for the given PCR-system an optimum Mg/dNTPs molar ratio is within the range of 1.5-2.0. An optimum concentration of each of the pair of primers for this PCR-system is about 0.3 microM. The possibility of PCR-amplification of 500-8500 b.p. DNA fragments has been demonstrated.  相似文献   

10.
The requirement of bovine heart mitochondrial oligomycin sensitivity conferring protein (OSCP) in conferring dicyclohexylcarbodiimide (DCCD)-sensitivity to membrane-bound F1 was investigated by using OSCP-depleted membrane fraction (UF0) of ATP synthase. The ATPase activity of UF0-F1 was completely insensitive to DCCD while that of UF0-F1-OSCP was inhibited 95% by 16 microM DCCD. Both UF0-F1 and UF0-F1-OSCP complexes bound 5 nmol [14C]DCCD/mg UF0, and all the radioactivity was found to be associated with the DCCD-binding proteolipid. The data suggest that OSCP may be necessary for transmitting not only energy-linked signals, but also signals induced by F0 inhibitory ligands in mitochondrial energy transduction.  相似文献   

11.
The bovine adrenal cortex adrenodoxin gene was inserted into pTZ19 under T7 promoter control. The adrenodoxin mRNA was synthesized with T7 RNA polymerase and then translated in the reticulocyte cell-free translation system. The protein product was identified as the adrenodoxin precursor with molecular weight 22000. The import of the precursor into isolated yeast mitochondria was carried out. The protein was found to be inserted into the trypsin-insensitive compartment of mitochondria via an energy dependent way. This resulted in the processing of the precursor to the 12000-mature form. Thus, the precursor of mammalian adrenodoxin can be normally imported into yeast mitochondria.  相似文献   

12.
The ATP synthase enzyme structure includes two stalk assemblies, the central stalk and the peripheral stalk. Catalysis involves rotation of the central stalk assembly together with the membrane-embedded ring of c-subunits driven by the trans-membrane proton-motive force, while the alpha and beta-subunits of F(1) are prevented from co-rotating by their attachment to the peripheral stalk. In the absence of structures of either the intact peripheral stalk or larger complexes containing it, we are studying its individual components and their interactions to build up an overall picture of its structure. Here, we describe an NMR structural characterisation of F(6), which is a 76-residue protein located in the peripheral stalk of the bovine ATP synthase and is essential for coupling between the proton-motive force and catalysis. Isolated F(6) has a highly flexible structure comprising two helices packed together through a loose hydrophobic core and connected by an unstructured linker. Analysis of chemical shifts, (15)N relaxation and RDC measurements confirm that the F(6) structure is flexible on a wide range of timescales ranging from nanoseconds to seconds. The relationship between this structure for isolated F(6) and its role in the intact peripheral stalk is discussed.  相似文献   

13.
DNA isolated from a newly described taeniid from Taiwan which shows adult characters indistinguishable from those of Taenia saginata was compared to DNA from T. saginata and nine other cestodes by restriction endonuclease digestion of genomic DNA and Southern blot analysis using 32P-labeled total cestode RNA and cloned ribosomal RNA gene fragments as probes. Hybridization patterns of Taiwan Taenia DNA revealed distinct variations from that of T. saginata and Taenia solium as well as all other cestode DNAs examined; however, similarities in restriction maps and sequence data between cloned ribosomal gene fragments from Taiwan Taenia (pTTr 3.1) and T. saginata (pTSgr 3.1 and PTSgr 2.4, respectively) suggest close evolutionary relatedness between these two taeniids. DNA sequence amplification from genomic DNA using oligonucleotide primers homologous to regions on both the 2.4- and 3.1-kb fragments was able to delineate between Taiwan Taenia and T. saginata by generating 1.0- and 0.29-kb fragments, respectively. Results demonstrated that Taiwan Taenia is not exclusive to Taiwan but exists in other parts of Eastern Asia and that adult morphology is insufficient for its detection in other locations. Results further support biological data indicating that Taiwan Taenia and T. saginata, although similar morphologically, are distinct genotypes.  相似文献   

14.
15.
The nearest neighbor relationships of bovine mitochondrial H(+)-ATPase subunits were investigated by the chemical cross-linking approach using the homobifunctional cleavable reagents dithiobis(succinimidyl propionate) and disuccinimidyl tartrate. Cross-linked proteins were resolved by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Individual subunits were detected by silver staining or by Western blotting and staining with subunit-specific antisera. Products larger than 80,000 daltons were not analyzed. Interactions between F1 subunits included cross-links between gamma and delta as well as gamma and epsilon subunits. Among F0 subunit interactions were observed cross-links of (i) coupling factor 6 (F6) with 8-, 20-, and 24-kDa proteins, (ii) oligomycin sensitivity-conferring protein (OSCP) with 24-kDa protein, and (iii) 20-kDa protein with 24-kDa protein. In addition, several cross-links among subunits involving F1 and F0 sectors were detected. These included cross-links between F6 and alpha, F6 and gamma, OSCP and alpha/beta, and 24-kDa protein and alpha/beta. Thus, OSCP, F6, and the 24-kDa protein were found to form cross-links with both F1 and F0 subunits. The surface accessibility of F0 subunits was investigated by subjecting aliquots of F0 to trypsin treatment. Our data demonstrated that the rate of degradation was in the order OSCP greater than 24-kDa protein greater than or equal to F6 greater than subunit 6. The degradation of subunits of F0 was prevented in intact or reconstituted F1-F0. Based on our present and previously published observations, a model of H(+)-ATPase has been proposed wherein OSCP, F6, and the 24-kDa protein are placed in the stalk region and the alpha and beta subunits of F1-ATPase have been extended down to the membrane surface to enclose the stalk segment.  相似文献   

16.
DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.  相似文献   

17.
NADH:ubiquinone oxidoreductase, the first enzyme in the respiratory electron transport chain of mitochondria, is a membrane-bound multi-subunit assembly, and the bovine heart enzyme is now known to contain about 40 different polypeptides. Seven of them are encoded in the mitochondrial DNA; the remainder are the products of nuclear genes and are imported into the organelle. The primary structures of 12 of the nuclear coded subunits have been described and those of a further 20 are described here. The subunits have been sequenced by following a strategy based on the polymerase chain reaction. This strategy has been tailored from existing methods with the twofold aim of avoiding the use of cDNA libraries, and of obtaining a cDNA sequence rapidly with minimal knowledge of protein sequence, such as can be determined in a single N-terminal sequence experiment on a polypeptide spot on a two-dimensional gel. The utility and speed of this strategy have been demonstrated by sequencing cDNAs encoding 32 nuclear-coded-membrane associated proteins found in bovine heart mitochondria, and the procedures employed are illustrated with reference to the cDNA sequence of the 20 subunits of NADH:ubiquinone oxidoreductase that are presented. Extensive use has also been made of electrospray mass spectrometry to measure molecular masses of the purified subunits. This has corroborated the protein sequences of subunits with unmodified N terminals, and their measured molecular masses agree closely with those calculated from the protein sequences. Nine of the subunits, B8, B9, B12, B13, B14, B15, B17, B18 and B22 have modified alpha-amino groups. The measured molecular masses of subunits B8, B13, B14 and B17 are consistent with the post-translational removal of the initiator methionine and N-acetylation of the adjacent amino acid. The initiator methionine of subunit B18 has been removed and the N-terminal glycine modified by myristoylation. Subunits B9 and B12 appear to have N-terminal and other modifications of a hitherto unknown nature. The sequences of the subunits of bovine complex I provide important clues about the location of iron-sulphur clusters and substrate and cofactor binding sites, and give valuable information about the topology of the complex. No function has been ascribed to many of the subunits, but some of the sequences indicate the presence of hitherto unsuspected biochemical functions. Most notably the identification of an acyl carrier protein in both the bovine and Neurospora crassa complexes provides evidence that part of the complex may play a role in fatty acid biosynthesis in the organelle, possibly in the formation of cardiolipin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Submitochondrial particles prepared by treatment of mitochondria with ammonia and silicotungstic acid were found to be deficient in coupling factor 6 according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting and had reduced ATP-Pi exchange activity. Requirement of coupling factor 6 for passive proton conductance through mitochondrial F0 was investigated by assaying the ability of depleted particles to sustain NADH-induced proton fluxes as measured by the quenching of 9-amino-6-chloro-2-methoxyacridine fluorescence. The depleted particles themselves showed negligible quenching, but the quenching increased markedly after treating the particles with oligomycin. The data show for the first time that coupling factor 6-depleted complexes have an active proton channel that can be blocked by oligomycin. Therefore, coupling factor 6 is not essential for inhibitor-sensitive proton conductance through mitochondrial F0.  相似文献   

20.
Oligomycin sensitivity-conferring protein (OSCP) is a water-soluble subunit of bovine heart mitochondrial H(+)-ATPase (F1-F0). In order to investigate the requirement of OSCP for passive proton conductance through mitochondrial F0, OSCP-depleted membrane preparations were obtained by extracting purified F1-F0 complexes with 4.0 M urea. The residual complexes, referred to as UF0, were found to be deficient with respect to OSCP, as well as alpha, beta, and gamma subunits of F1-ATPase, but had a full complement of coupling factor 6 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting techniques. These UF0 complexes had no intrinsic ATPase activity and were able to bind nearly the same amount of F1-ATPase in the presence of either OSCP or NH4+ ions alone, or a combination of the two. However, the preparations exhibited an absolute dependency on OSCP for conferral of oligomycin sensitivity to membrane-bound ATPase. The passive proton conductance in UF0 proteoliposomes was measured by time-resolved quenching of 9-amino-6-chloro-2-methoxyacridine or 9-aminoacridine fluorescence following a valinomycin-induced K(+)-diffusion potential. The data clearly establish that OSCP is not a necessary component of the F0 proton channel nor is its presence required for conductance blockage by the inhibitors oligomycin or dicyclohexylcarbodiimide. Furthermore, OSCP does not prevent or block passive H+ leakage. Comparisons of OSCP with the F1-F0 subunits from Escherichia coli and chloroplast lead us to suggest that mitochondrial OSCP is, both structurally and functionally, a hybrid between the beta and delta subunits of the prokaryotic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号