首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. Many disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this paper, a new predictor model based on the Bayesian classification methodology is introduced to predict for a given protein or protein region if it is intrinsically disordered or ordered using only its primary sequence. The method allows to incorporate length-dependent amino acid compositional differences of disordered regions by including separate statistical representations for short, middle and long disordered regions. The predictor was trained on the constructed data set of protein regions with known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438]. Further strength of our approach is the ease of implementation.  相似文献   

2.
Fesselin is a heat stable proline-rich actin binding protein. The stability, amino acid composition, and ability to bind to several proteins suggested that fesselin may be unfolded under native conditions. While the complete sequence of fesselin is unknown an analysis of a closely related protein, synaptopodin 2 from Gallus gallus, indicates that fesselin consists of a series of unstructured regions interspersed between short folded regions. To determine if fesselin is natively unfolded, we compared fesselin to a known globular protein (myosin S1) and a known unfolded protein Cad22 (the COOH terminal 22 kDa fragment of caldesmon). Fesselin, and Cad22, had larger Stokes radii than globular proteins of equivalent mass. The environments of tryptophan residues of fesselin and Cad22 were the same in the presence and absence of 6 M guanidine hydrochloride. Fesselin had a circular dichroism spectrum that was primarily random coil. Changes in pH over the range of 1.5-11.5 did not alter that spectrum. Increasing the temperature to 85 degrees C caused an increase in the degree of secondary structure. Calmodulin binding to fesselin altered the environment of the tryptophan residues so that they became less sensitive to the quencher acrylamide. These results show that fesselin is a natively unfolded protein.  相似文献   

3.
SH Lee  EJ Cha  JE Lim  SH Kwon  DH Kim  H Cho  KH Han 《Molecules and cells》2012,34(2):165-169
The hepatitis B virus x protein (HBX) is expressed in HBVinfected liver cells and can interact with a wide range of cellular proteins. In order to understand such promiscuous behavior of HBX we expressed a truncated mini-HBX protein (named Tr-HBX) (residues 18-142) with 5 Cys → Ser mutations and characterized its structural features using circular dichroism (CD) spectropolarimetry, NMR spectroscopy as well as bioinformatics tools for predicting disorder in intrinsically unstructured proteins (IUPs). The secondary structural content of Tr-HBX from CD data suggests that Tr-HBX is only partially folded. The protein disorder prediction by IUPred reveals that the unstructured region encompasses its N-terminal ~30 residues of Tr-HBX. A two-dimensional (1)H-(15)N HSQC NMR spectrum exhibits fewer number of resonances than expected, suggesting that Tr-HBX is a hybrid type IUP where its folded C-terminal half coexists with a disordered N-terminal region. Many IUPs are known to be capable of having promiscuous interactions with a multitude of target proteins. Therefore the intrinsically disordered nature of Tr-HBX revealed in this study provides a partial structural basis for the promiscuous structure-function behavior of HBX.  相似文献   

4.
Human Securin, also called PTTG1 (pituitary tumor transforming gene 1 product), is an estrogen-regulated proto-oncogene with multifunctional properties. We characterized human full-length Securin using a variety of biophysical techniques, such as nuclear magnetic resonance, circular dichroism, and size-exclusion chromatography. Under physiological conditions, Securin is devoid of tertiary and secondary structure except for a small amount of poly-(L-proline) type II helix and its hydrodynamic characteristics suggest it behaves as an extended polypeptide. These results suggest that Securin is unstructured in solution and so belongs to the family of natively unfolded proteins. In addition, to gain structural and quantitative insight, we investigated the binding of Securin to p53. Analytical ultracentrifugation and fluorescence anisotropy studies revealed no evidence of any direct interaction between unmodified recombinant Securin and p53 in vitro.  相似文献   

5.
6.
The synuclein family of intrinsically unfolded proteins is composed of three highly homologous members, alpha-synuclein (alphaS), beta-synuclein (betaS) and gamma-synuclein (gammaS), which are linked to neurodegenerative disorders and cancer. alphaS has been studied intensively after its identification as the major protein component of amyloid-like deposits in Parkinson's disease and dementia with Lewy bodies. betaS, on the other hand, was found to act as a potent inhibitor of alphaS amyloid formation, and it is proposed as a natural regulator of its neurotoxicity. It is then of particular interest to elucidate the structural and dynamic features of the soluble state of betaS as a first step to understand the molecular basis of its anti-amyloidogenic effect on alphaS. We present here the characterization of natively unstructured betaS by high resolution heteronuclear NMR techniques. A combination of pulse-field gradient, three-dimensional heteronuclear correlation, residual dipolar couplings, paramagnetic relaxation enhancement and backbone relaxation experiments were employed to characterize the ensemble of conformations populated by the protein. The results indicate that betaS adopts extended conformations in its native state, characterized by the lack of the long-range contacts as previously reported for alphaS. Despite the lack of defined secondary structure, we found evidence for transient polyproline II conformations clustered at the C-terminal region. The structuring of the backbone at the C terminus is locally encoded, stabilized by the presence of eight proline residues embedded in a polypeptide stretch rich in hydrophilic and negatively charged amino acids. The structural and functional implications of these findings are analyzed via a thorough comparison with its neurotoxic homolog alphaS.  相似文献   

7.
8.
Huntingtin interacting protein HYPK is intrinsically unstructured   总被引:1,自引:0,他引:1  
To characterize HYPK, originally identified as a novel huntingtin (Htt) interacting partner by yeast two hybrid assay, we used various biophysical and biochemical techniques. The molecular weight of the protein, determined by gel electrophoresis, was found to be about 1.3-folds ( approximately 22 kDa) higher than that obtained from mass spectrometric analysis (16.9 kDa). In size exclusion chromatography experiment, HYPK was eluted in three fractions, the hydrodynamic radii for which were calculated to be approximately 1.5-folds (23.06 A) higher than that expected for globular proteins of equivalent mass (17.3 A). The protein exhibited predominantly (63%) random coil characteristics in circular dichroism spectroscopy and was highly sensitive to limited proteolysis by trypsin and papain, indicating absence of any specific domain. Experimental evidences with theoretical analyses of amino acids composition of HYPK and comparison with available published data predicts that HYPK is an intrinsically unstructured protein (IUP) with premolten globule like conformation. In presence of increasing concentration of Ca(2+), HYPK showed conformational alterations as well as concomitant reduction of hydrodynamic radius. Even though any link between the natively unfolded nature of HYPK, its conformational sensitivity towards Ca(2+) and interaction with Htt is yet to be established, its possible involvement in Huntington's disease pathogenesis is discussed.  相似文献   

9.
10.
MOTIVATION: Likelihood ratio approximants (LRA) have been widely used for model comparison in statistics. The present study was undertaken in order to explore their utility as a scoring (ranking) function in the classification of protein sequences. RESULTS: We used a simple LRA-based on the maximal similarity (or minimal distance) scores of the two top ranking sequence classes. The scoring methods (Smith-Waterman, BLAST, local alignment kernel and compression based distances) were compared on datasets designed to test sequence similarities between proteins distantly related in terms of structure or evolution. It was found that LRA-based scoring can significantly outperform simple scoring methods.  相似文献   

11.
MOTIVATION: Partially and wholly unstructured proteins have now been identified in all kingdoms of life--more commonly in eukaryotic organisms. This intrinsic disorder is related to certain critical functions. Apart from their fundamental interest, unstructured regions in proteins may prevent crystallization. Therefore, the prediction of disordered regions is an important aspect for the understanding of protein function, but may also help to devise genetic constructs. RESULTS: In this paper we present a computational tool for the detection of unstructured regions in proteins based on two properties of unfolded fragments: (1) disordered regions have a biased composition and (2) they usually contain either small or no hydrophobic clusters. In order to quantify these two facts we first calculate the amino acid distributions in structured and unstructured regions. Using this distribution, we calculate for a given sequence fragment the probability to be part of either a structured or an unstructured region. For each amino acid, the distance to the nearest hydrophobic cluster is also computed. Using these three values along a protein sequence allows us to predict unstructured regions, with very simple rules. This method requires only the primary sequence, and no multiple alignment, which makes it an adequate method for orphan proteins. AVAILABILITY: http://genomics.eu.org/  相似文献   

12.
CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein   总被引:10,自引:0,他引:10  
The ubiquitin–proteasome system catalyses the immediate destruction of misfolded or impaired proteins generated in cells, but how this proteolytic machinery recognizes abnormality of cellular proteins for selective elimination remains elusive. Here, we report that the C-terminus of Hsc70-interacting protein (CHIP) with a U-box domain is an E3 ubiquitin-ligase collaborating with molecular chaperones Hsp90 and Hsc70. Thermally denatured firefly luciferase was multiubiquitylated by CHIP in the presence of E1 and E2 (Ubc4 or UbcH5c) in vitro, only when the unfolded substrate was captured by Hsp90 or Hsc70 and Hsp40. No ubiquitylating activity was detected in CHIP lacking the U-box region. CHIP efficiently ubiquitylated denatured luciferase trapped by the C-terminal region of Hsp90, which contains a CHIP binding site. CHIP also showed self-ubiquitylating activity independent of target ubiquitylation. Our results indicate that CHIP can be regarded as ‘a quality-control E3’ that selectively ubiquitylates unfolded protein(s) by collaborating with molecular chaperones.  相似文献   

13.

Background  

The stability of proteins is governed by the heat capacity, enthalpy and entropy changes of folding, which are strongly correlated to the change in solvent accessible surface area experienced by the polypeptide. While the surface exposed in the folded state can be easily determined, accessibilities for the unfolded state at the atomic level cannot be obtained experimentally and are typically estimated using simplistic models of the unfolded ensemble. A web application providing realistic accessibilities of the unfolded ensemble of a given protein at the atomic level will prove useful.  相似文献   

14.
Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%. This result suggests that composition alone is sufficient to accurately recognize disorder. Interestingly, SVMs using reduced sets of amino acids based on chemical similarity preserve high recognition accuracy. A set as small as four retains an accuracy of 84+/-2%; this suggests that general physicochemical properties rather than specific amino acids are important factors contributing to protein disorder.  相似文献   

15.

Background

Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results

Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test.

Conclusions

Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms.
  相似文献   

16.
The endoplasmic reticulum (ER) is involved in the folding and maturation of membrane-bound and secreted proteins. Disturbed homeostasis in the ER can lead to accumulation of misfolded proteins, which trigger a stress response called the unfolded protein response (UPR). In neurodegenerative diseases that are classified as tauopathies, activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau. Several lines of evidence indicate that UPR activation contributes to increased levels of phosphorylated tau, a prerequisite for the formation of tau aggregates. Increased understanding of the crosstalk between signaling pathways involved in protein quality control in the ER and tau phosphorylation will support the development of new therapeutic targets that promote neuronal survival.  相似文献   

17.
An easy and uncomplicated method to predict the solvent accessibility state of a site in a multiple protein sequence alignment is described. The approach is based on amino acid exchange and compositional preference matrices for each of three accessibility states: buried, exposed, and intermediate. Calculations utilized a modified version of the 3D―ali databank, a collection of multiple sequence alignments anchored through protein tertiary structural superpositions. The technique achieves the same accuracy as much more complex methods and thus provides such advantages as computational affordability, facile updating, and easily understood residue substitution patterns useful to biochemists involved in protein engineering, design, and structural prediction. The program is available from the authors; and, due to its simplicity, the algorithm can be readily implemented on any system. For a given alignment site, a hand calculation can yield a comparative prediction. Proteins 32:190–199, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Little is known about the structure of the individual nucleoporins that form eukaryotic nuclear pore complexes (NPCs). We report here in vitro physical and structural characterizations of a full-length nucleoporin, the Saccharomyces cerevisiae protein Nup2p. Analyses of the Nup2p structure by far-UV circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, protease sensitivity, gel filtration, and sedimentation velocity experiments indicate that Nup2p is a "natively unfolded protein," belonging to a class of proteins that exhibit little secondary structure, high flexibility, and low compactness. Nup2p possesses a very large Stokes radius (79 A) in gel filtration columns, sediments slowly in sucrose gradients as a 2.9 S particle, and is highly sensitive to proteolytic digestion by proteinase K; these characteristics suggest a structure of low compactness and high flexibility. Spectral analyses (CD and FTIR spectroscopy) provide additional evidence that Nup2p contains extensive regions of structural disorder with comparatively small contributions of ordered secondary structure. We address the possible significance of natively unfolded nucleoporins in the mechanics of nucleocytoplasmic trafficking across NPCs.  相似文献   

19.
20.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号