首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies have shown inhibitory effects of endogenous opioids on LH secretion in early post-natal heifers. However, it is not clear whether these effects change during the rest of the prepubertal period or whether the inhibitory influences on the GnRH neurones are direct or by way of other neuronal systems. Two experiments were performed in heifer calves to study the developmental patterns of opioidergic, dopaminergic and adrenergic regulation of LH and the possible interactions between opioids and dopaminergic and adrenergic neuronal systems, in the regulation of LH secretion. In Expt 1 four groups each of five heifer calves were used. Blood samples were taken every 15 min for 10 h and each calf received one of the following treatments as a single injection at 4, 14, 24, 36 and 48 weeks of age: (i) naloxone (opioid antagonist, 1 mg kg(-1), i. v.); (ii) sulpiride (dopamine D2 antagonist, 0.59 mg kg(-1), s.c.); (iii) naloxone and sulpiride combined; or (iv) vehicle (control group). Treatments began after the first blood sample was taken. The design of Expt 2 was similar; a separate group of heifer calves was assigned to receive one of the following treatments as a single injection at 4, 14, 24, 36 and 48 weeks of age: (i) naloxone; (ii) phenoxybenzamine (an alpha-adrenoreceptor blocker, 0.8 mg kg(-1), i. v.); (iii) naloxone and phenoxybenzamine; (iv) or vehicle. Results from Expt 1 showed that the maximum concentration of LH and the number of calves responding to treatments with an LH pulse was higher in the first hour after treatments at 36 and 48 weeks of age in the naloxone group compared with the control or sulpiride groups (P < 0.05). These values in the naloxone group also increased over time and were greatest at 48 weeks of age (P < 0.05). In heifers given naloxone + sulpiride treatment at 36 and 48 weeks of age, maximum concentrations of LH in the first hour after treatment did not differ from the naloxone and control groups. In Expt 2, at 36 and 48 weeks of age, treatment with naloxone with or without phenoxybenzamine resulted in higher concentrations of LH than in the controls (P < 0.05). No pulses were seen over the first hour of treatment at 36 and 48 weeks of age in heifers treated with phenoxybenzamine. The 10 h periods of blood sampling at 48 weeks of age revealed that phenoxybenzamine alone suppressed LH pulse frequency and mean serum concentrations of LH compared with the control group (P < 0.05). It was concluded that a strong or more acute inhibition of LH secretion by endogenous opioids developed in mid- to late prepubertal heifers, or alternatively, that removal of opioidergic inhibition at the GnRH neurone unmasked stimulatory inputs that were greater in heifers close to first ovulation. Since sulpiride appeared to negate in part the effects of naloxone on LH release, the suppressive effects of opioids could be exerted in part through the inhibition or blocking of a stimulatory dopaminergic system. alpha-Adrenergic neuronal systems have stimulatory effects on LH release, especially during the late prepubertal period, but do not appear to mediate opioidergic inhibition of LH secretion in prepubertal heifer calves.  相似文献   

2.
The pattern and opioidergic control of the secretion of gonadotrophins in prepubertal heifer calves were examined. Ten age-matched Hereford heifer calves were weighed and a blood sample was taken every 2 weeks from 2 to 25 weeks of age and then weekly until 60 weeks of age. At 60 weeks, a fertile bull was introduced and at 75 weeks of age pregnancy diagnosis was performed by transrectal ultrasonography. At 4, 12, 18, 24 and 32 weeks of age, the opioid antagonist naloxone was injected (i.v., n = 5; 1 mg kg-1 body weight) each hour for 12 h. Control heifers received sterile saline at the same ages. Blood samples were collected every 12 min for the 12 h treatment and serum samples were analysed for luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Samples taken once every 2 weeks from 2 to 60 weeks were analysed for LH, FSH and oestradiol, and weekly samples were taken for progesterone determination. There was no effect of naloxone on the age at puberty, which was 56.2 +/- 0.7 weeks at a body weight of 388.5 +/- 8.0 kg. The mean age at conception was 63.4 +/- 0.5 weeks. On the basis of samples taken every other week, serum concentrations of LH were high at 10 weeks and between 40 and 60 weeks of age. From the periods of intensive blood collection, the early rise in mean serum concentrations of LH appeared later at 12 and 18 weeks of age and was caused by a rise in LH pulse amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of naloxone, an antagonist of opioid peptides, on circulating concentrations of luteinizing hormone (LH), testosterone, and growth hormone (GH) were determined in sexually mature boars. Blood samples were collected at 15-min intervals for three hr from five crossbred boars. Two hr after initiation of blood sampling, boars received an i.v. challenge of naloxone (1 mg/kg body weight; n=2) or 0.9% saline (n=3). Twenty-four hr later the experiment was repeated, but boars that previously received naloxone received saline and vice versa. A time by treatment interaction (p=0.09) was detected for concentrations of LH in serum, and levels of LH were greater (p<0.03) after treatment with naloxone compared to saline. Concentrations of testosterone in serum were affected by time (p<0.01), but not treatment (p= 0.59) or treatment by time (p=0.74). A treatment by time interaction (p=0.02) was detected for serum GH concentrations. Levels of GH increased in saline-treated boars (p<0.01), but not in boars receiving naloxone (p>0.1). Our results are consistent with the theory that opioid peptides suppress LH secretion and stimulate GH release in sexually mature boars.  相似文献   

4.
Spring-born crossbred ewe lambs were raised in a natural photoperiod and saline (N = 6) or naloxone (1 mg/kg) in saline (N = 6) was injected (i.m.) every 2 h for 6 h at 5, 10 and 15 weeks of age and for 8 h at 20, 25 and 30 weeks of age. Blood samples were taken every 12 min during treatment periods. Naloxone had no effect on time to first oestrus (controls 235 +/- 6 days, naloxone 242 +/- 7 days). Mean serum LH concentrations and LH pulse frequency were elevated by naloxone in ewe lambs at 20, 25, and 30 weeks of age (P less than 0.05). The only FSH response to naloxone was a depression of mean serum concentrations at 30 weeks of age (P less than 0.05). LH pulse amplitude was elevated at 5 weeks of age in all ewe lambs and declined thereafter to a nadir at 30 weeks of age in control, but not in naloxone-treated animals (P less than 0.05). LH pulse frequency was elevated at 10 weeks of age in control ewe lambs and in all animals at 30 weeks of age (P less than 0.05). FSH pulse frequency declined from 5 weeks of age in control ewe lambs (P less than 0.05), with very few pulses noted in 25- and 30-week-old animals. We conclude that (1) opioidergic suppression of LH, but not FSH, secretion developed at 20 weeks of age in the growing ewe lambs used in the present study, with no obvious change in suppression before the onset of first oestrus: (2) pulsatile FSH secretion occurred in the young ewe lamb but was lost as the lamb matured: (3) attainment of sexual maturity was preceded by an elevation in LH pulse frequency.  相似文献   

5.
Twelve lactating sows were used at 22.4 +/- 0.8 days postpartum to determine whether endogenous opioid peptides (EOP) are involved in the suckling-induced inhibition of luteinizing hormone (LH) secretion. Four sows each received either 1, 2, or 4 mg/kg body weight of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. All sows were then given 100 micrograms gonadotropin-releasing hormone (GnRH) in saline i.v., and blood samples were collected for an additional h. Pigs were weaned after blood sampling. At 40 h after weaning, sows were treated and blood samples collected as during suckling. Serum concentrations of LH after treatment with NAL were similar for all doses; therefore, the data were pooled across doses. During suckling, serum concentrations of LH were 0.41 +/- 0.04 ng/ml before NAL treatment, increased to 0.65 +/- 0.08 ng/ml at 30 min after NAL treatment, and remained elevated above pretreatment concentrations for 120 min (p less than 0.05). Naloxone failed to alter serum concentrations of LH after weaning. These data indicate that EOP may be involved in the suckling-induced suppression of LH secretion and that weaning may either decrease opioid inhibition of LH secretion or decrease pituitary LH responsiveness to endogenous GnRH released by NAL.  相似文献   

6.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
German Landrace piglets, 6-7 days of age, received either saline (9 males, 8 females), 0.5 mg naloxone/kg body weight (7 males, 7 females), 2.0 mg naloxone/kg (7 males, 8 females) or 0.5 mg DADLE (potent leu-enkephalin analog)/kg (7 males, 7 females) through a catheter inserted into the jugular vein 2-4 days previously. Male or female piglets were allocated randomly, within litter, to the different experimental groups. Blood samples were withdrawn for a period of 240 min at 10-min intervals for the first 60 min following injection and at 20-min intervals for the rest of the test period. Piglets were separated from their mother via a detachable wall and were allowed to suckle every 50 min. DADLE failed to alter plasma levels of LH in both males and females. Naloxone induced a significant (P less than 0.01) decrease in LH concentrations in females 10 to 60 min after injection (saline: 2.3 +/- 0.2 ng/ml plasma (SEM); 0.5 mg naloxone/kg: 1.0 +/- 0.2 ng/ml plasma and 2 mg naloxone/kg 1.2 +/- 0.4 ng/ml plasma). In males low doses of naloxone reduced plasma LH levels 10 to 40 min after injection (saline: 2.0 +/- 0.3 ng/ml plasma and 0.5 ng naloxone/kg: 1.1 +/- 0.3 ng/ml), whereas a decrease in plasma LH levels occurred 80 to 140 min after injection of high doses of naloxone (saline: 2.1 +/- 0.2 ng/ml and 2 mg naloxone/kg: 1.0 +/- 0.2 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of endogenous opioid peptides (EOP) and individual animal temperament on serum luteinizing hormone (LH) were investigated in seasonally anestrous Brahman heifers (n = 24). Animals that had shown behavioral estrus in previous months but that had not returned to estrus for at least 30 d were selected. The heifers were ranked by temperament (tame = 1, normal = 2, wild = 3) and randomly allotted into three groups. Blood was collected from one heifer of each group per day. Blood samples were taken via jugular cannula every 15 min for 6 h and every 30 min for another 4 h. After the first hour of sampling, the heifers received intravenous saline (SAL, n = 8); naloxone (LN, 0.5 mg/kg i.v., n = 8); or naloxone (HN, 1.0 mg/kg i.v., n = 8). Three hours after naloxone treatment, each heifer was given gonadotropin releasing hormone (GnRH, 100 mug i.m.). All samples were processed to yield serum and were assayed for LH by radioimmunoassay (RIA). Hourly samples were assayed for cortisol by RIA. The area under the LH curve 60 min postnaloxone treatment was higher in LN and HN than in SAL (57.0 and 40.8 vs 6.1 units; P<0.01); and the area under the 180 min postnaloxone curve remained higher in LN than in SAL (106.2 vs 35.1 units; P<0.05). Cortisol concentrations 60 min postnaloxone administration were above prenaloxone levels(38.2 vs 26.7 ng/ml; P<0.0002). Temperament scores of heifers were positively correlated with cortisol release. The area under the cortisol curve had a negative correlation with mean LH. Serum LH concentrations appear to be suppressed by EOP in seasonally anestrous Brahman heifers, and EOP appear to reduce serum cortisol concentrations. Excitable heifers had higher concentrations of serum cortisol, which negatively affected serum LH concentrations.  相似文献   

9.
The aim of this study was to determine whether the decline in oestradiol inhibition of circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) during the peripubertal period of heifers is associated with a change in opioid modulation of LH and FSH secretion. Opioid inhibition of LH secretion was determined by response to administration of the opioid antagonist naloxone. Prepubertal heifers (403 days old) were left as intact controls, ovariectomized or ovariectomized and chronically administered oestradiol. Control heifers were used to determine time of puberty. Three weeks after ovariectomy, four doses of naloxone (0.13-0.75 mg kg-1 body weight) or saline were administered to heifers in the treatment groups in a latin square design (one dose per day). Blood samples were collected at intervals of 10 min for 2 h before and 2 h after administration of naloxone. This procedure was repeated four times at intervals of 3 weeks during the time intact control heifers were attaining puberty. All doses of naloxone induced a similar increase in concentration of serum LH within a bleeding period. During the initial bleeding period (before puberty in control heifers), administration of naloxone induced an increase in LH concentration, but the response was greater for heifers in the ovariectomized and oestradiol treated than in the ovariectomized group. At the end of the study when control heifers had attained puberty (high concentrations of progesterone indicated corpus luteum function), only heifers in the ovariectomized and oestradiol treated group responded to naloxone. Opioid inhibition of LH appeared to decline in heifers during the time control heifers were attaining puberty. Heifers in the ovariectomized group responded to naloxone at the time of administration with an increase in FSH, but FSH did not respond to naloxone at any other time. Administration of naloxone did not alter secretion of FSH in ovariectomized heifers. These results suggest that opioid neuropeptides and oestradiol are involved in regulating circulating concentrations of LH and possibly FSH during the peripubertal period. Opioid inhibition of gonadotrophin secretion appeared to decline during the peripubertal period but was still present in ovariectomized heifers treated with oestradiol after the time when age-matched control heifers had attained puberty. We conclude that opioid inhibition is important in regulating LH and FSH in circulation in heifers during the peripubertal period. However, opioids continue to be involved in regulation of circulating concentrations of LH after puberty.  相似文献   

10.
Stimulation by naloxone, an opioid antagonist, of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion was examined in spring-born crossbred ram lambs raised under natural photoperiod. Vehicle (n = 6) or 1 mg naloxone/kg vehicle (n = 6) was injected (i.m.) 3 times at 2-h intervals at 5, 10 and 15 weeks of age and 4 times at 2-h intervals at 20, 25, 30 and 35 weeks of age. Blood samples were taken every 12 min for 6 h at 5, 10 and 15 weeks of age and for 8 h at 20, 25, 30 and 35 weeks of age. Naloxone had no effect on age at sexual maturity (controls 239 +/- 23 days; naloxone 232 +/- 33 days). The only significant (P less than 0.05) effect of naloxone on FSH was a greater pulse amplitude in 10-week-old treated lambs than in control lambs. Naloxone treatment resulted in greater LH pulse amplitude at 5 and 10 weeks of age (P less than 0.05), lower basal serum concentration of LH at 10 weeks of age (P less than 0.05), greater LH pulse frequency at 25 weeks of age (P less than 0.05), and greater mean serum concentrations of LH, basal LH and LH pulse amplitude at 35 weeks of age (P less than 0.01) than in the controls. In both groups of lambs, mean and basal FSH, and LH and FSH pulse amplitude were highest at 5 weeks of age and fell with age. LH pulse amplitude was lowest at 35 weeks of age (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In bull calves an early transient increase in circulating concentrations of LH occurs between 6 and 20 weeks of age. This has been shown to influence reproductive development and performance later in life. In an attempt to hasten the onset of sexual maturity, bull calves (Hereford x Charolais) were treated (im) with 120 ng/kg of GnRH (n=6) twice every day from 4 to 8 weeks of age; control calves received saline (n=6). Injection of GnRH resulted in an LH pulse in all animals. GnRH treated bulls displayed more rapid testicular growth rates between 22 and 44 weeks of age. Sexual maturity (SC>or=28 cm) was achieved earlier in GnRH treated bulls compared to saline treated bulls (41.7+/-2.22 and 47.0+/-0.45 weeks of age, respectively) and this was confirmed by age of sexual maturity based on ejaculate characteristics (>50 million spermatozoa, >10% motility; 45.0+/-0.86 and 49.0+/-1.13 weeks of age for GnRH and control treated bull calves, respectively; P<0.05). We concluded that treatment with GnRH, twice daily, from 4 to 8 weeks of age, prior to the endogenous early increase in plasma LH concentrations, could increase in plasma LH concentrations, advance testicular development and reduce age at puberty in beef bull calves. This may provide the basis for a simple regimen to hasten sexual development in the bull calf.  相似文献   

12.
Three experiments were conducted to evaluate the role of endogenous opioid peptides (EOP) in modulating luteinizing hormone (LH) secretion in the prepubertal gilt. In Experiment I, 8 prepubertal (P) gilts, 160-170 days of age (puberty = 197 +/- 10 days), received either 1 (n = 2), 3 (n = 3), or 6 (n = 3) mg/kg BW of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected by jugular vein cannula every 15 min for 2 h before and 2 h after NAL. All doses of NAL failed to alter serum LH concentrations. In Experiment II, 21 P gilts 160-170 days of age and 21 mature (M) gilts were ovariectomized (OVX). At the time of OVX, gilts were classified as prepubertal if their ovaries were devoid of corpora albicantia and corpora lutea. Three weeks after OVX, P and M gilts were injected twice daily for 10 days with either 0.85 mg/kg BW of progesterone (P4) or oil vehicle (V), resulting in the following groups: PP4 (n = 11), PV (n = 10), MP4 (n = 11), and MV (n = 10). All gilts received 1 mg/kg BW of NAL on the last day of treatment. Blood samples were collected via a jugular cannula every 15 min for 4 h before and 2 h after NAL treatment. NAL treatment resulted in an increase (p less than 0.05) in serum LH concentrations only in the MP4 gilts. In Experiment III, 15 OVX gilts 280 days of age were used. Ten of the 15 gilts were OVX prior to puberty at 160 days of age and were classified as chronologically mature (CM) at the time of treatment. The remaining 5 gilts were OVX after puberty, and were classified as sexually mature (SM) at the time of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Six lactating sows were injected through an indwelling vena cava cannula with naloxone (2.5 mg/kg body weight) on Day 15 post partum. Blood samples were collected through the cannulas at 10-min intervals for 8 h before and 10 h after naloxone administration. Plasma prolactin and LH concentrations were measured by radioimmunoassay. Naloxone caused a marked suppression of plasma prolactin concentrations lasting 4-6 h. LH concentrations were also affected by naloxone: LH rose to reach maximum values 20-50 min after naloxone treatment. Pretreatment values were recorded 200-300 min after the treatment. These results indicate that endogenous opioids are involved in causing the endocrine patterns occurring during lactation, i.e. high prolactin and low LH concentrations.  相似文献   

14.
It was suggested that an early increase in gonadotrophin secretion in calves aged between 6 and 24 weeks might be critical for initiating developmental changes culminating in puberty. An early rise in luteinizing hormone (LH) release appears to be caused by an increase in LH pulse frequency in bull calves and by an increase in LH pulse amplitude in heifer calves. Previously we have found differences in the characteristics of the LH rise between prepubertal beef calves born in spring or fall; however, age at puberty was not affected by season of birth. Here we report the LH/FSH secretory patterns in prepubertal bull and heifer calves (Hereford x Charolais), born in March or April, respectively (i.e., early or late during the spring calving season; six animals of each sex born at each time). The bull calves of both groups reached puberty (defined as an attainment of scrotal circumference of >or=28 cm) at 43.2+/-1.3 weeks of age (P>0.05). Age at puberty for March- and April-born heifer calves (defined as the age at which serum progesterone concentrations first exceeded 0.4 ng/ml) averaged 56.0+/-1.4 weeks (P>0.05). Based on blood samples taken weekly from birth to 26 weeks of age, and then every other week until puberty, bull calves born in March exceeded April-born bull calves in mean serum LH concentrations at 6, 10 and 12 weeks of age (P<0.05). Mean FSH concentrations were greater (P<0.05) in March-born compared to April-born bull calves from 34 to 32 weeks before puberty. Mean serum LH (at 40, 42 and 56 weeks) and FSH concentrations (at 2, 10, 20, 22-26, 30 and 56 weeks of age) were greater (P<0.05) in heifer calves born in April than March. On the basis of frequent blood sampling (every 12 min for 10 h), heifer calves born in April exceeded March-born animals in mean LH and FSH concentrations, at 5 and 25 weeks, and LH pulse frequency, at 5, 10 and 25 weeks of age (P<0.05). None of the parameters of LH secretion (i.e., mean concentrations of LH, LH pulse frequency and amplitude based on frequent blood collection) differed between March- and April-born bull calves in this study (P>0.05). In summary, March-born bull calves had greater mean serum LH and FSH concentrations prior to 24 weeks of age than April-born calves. April-born heifer calves had greater mean serum concentrations of LH and FSH but this difference was not confined to the early postnatal period. Although there were significant differences in absolute amounts of LH secreted, there were no differences in the frequency of LH secretory pulses amongst March- and April-born bull calves and no differences in LH pulse amplitude in heifer calves born in March or April. As these particular parameters of LH secretion, as well as age at puberty, are not affected by the time or season of birth, they may be primary hormonal cues governing sexual development in bulls and heifers, respectively.  相似文献   

15.
Madgwick S  Evans AC  Beard AP 《Theriogenology》2005,63(8):2323-2333
In heifer calves, an early transient increase in circulating concentrations of LH is associated with early follicular development and is thought to regulate the timing of puberty. In an attempt to hasten the onset of sexual maturity, the early rise in LH concentration was advanced by injecting heifer calves with 120 ng/kg of GnRH (n=6) twice daily from 4 to 8 weeks of age; control calves received saline (n=6). Blood samples were collected every 15 min for 10h at 4, 8, 14, 20, 26, 32, 38, 44 and 50 weeks of age. Treatment with GnRH increased mean circulating concentrations of LH at 8 weeks of age (P<0.05), LH pulse frequency at 4 and 8 weeks of age (P<0.05), and reduced the mean age at puberty by 6 weeks (56.8+/-1.7 versus 62.8+/-2.4 weeks of age, for GnRH treated and control calves, respectively; P=0.04). Body weight gain was greater in GnRH-treated calves than control calves (P<0.05), and the rate of weight gain was shown to be a significant covariate within age at puberty. In conclusion, we suggest that the timing of the early rise in LH concentrations is a critical signal involved in the timing of puberty in heifers.  相似文献   

16.
Endocrine control of follicular growth was determined by observing the left ovary of prepubertal calves previously treated with a potent GnRH agonist for 13 days. The ovarian response to hormonal stimulation was determined using the right ovaries of the same animals. Three-month-old crossbred calves were assigned to one of the two following treatment groups: 1) saline control for 13 days, with purified porcine FSH for the last 3 days (n = 5); and 2) GnRHa for 13 days, with purified porcine FSH for the final 3 days (n = 5). The left ovaries were removed from all calves after 10 days, and the right ovaries were removed at the end of treatment. Plasma concentrations of FSH, LH and oestradiol-17 beta were followed up during the GnRHa and pFSH treatments. The maximum macroscopic diameter of the F1 follicle, as determined by daily ultrasonography, did not differ between GnRHa-treated calves (from 6.6 to 10.4 mm) and the saline control calves (from 6.7 to 10.3 mm). Histological analysis of the ovaries showed that the number of follicles > 0.40 mm in diameter varied greatly for calves of the two groups (from 11 to 220 at 10 days). GnRHa significantly increased the mean number of follicles (total and nonatretic) of size class > 5.4 mm as compared to saline control calves (P < 0.05). The FSH treatment significantly increased the mean number of follicles 3.00-5.4 and > 5.4 mm in diameter (P < 0.05), with no change in the number of follicles smaller than 3.00 mm. The rate of atresia of large follicles (3.01-5.40 mm) was significantly reduced by purified porcine FSH treatment in both groups (P < 0.05). In no case did the GnRHa induce ovulation or luteinization of follicles. The LH and FSH concentrations increased transiently after GnRHa treatment on the first day, but afterwards, both hormones increased to only one sixth of what was observed after the initial GnRHa injection treatment. This increase in LH and FSH was observed 1 h after GnRHa treatment on each consecutive day of the experiment and were significantly different in the control group (0 h versus 1 h versus 2 h x saline control versus GnRH agonists groups; P < 0.01). During the superovulatory treatment, FSH concentrations peaked at around 0.70 ng.mL-1 in both saline- and GnRHa-treated groups on the first day but on the last day of surovulatory treatment, FSH concentrations were higher in GnRHa agonist-treated calves than in the control calves (day 11 versus day 12 versus day 13 x saline control versus GnRH agonist treatment groups; P < 0.01). LH profiles were unchanged by surovulatory treatment. Concentrations of oestradiol-17 beta increased significantly over the three days (P < 0.001) of the superovulatory treatments in both groups (P < 0.01). These results indicate that GnRH agonist treatment allows recruited antral follicles to pursue their growth during the early selection process via sustained FSH and LH secretion allowing more than a single large follicle to maintain their growth without going to atresia.  相似文献   

17.
The effects of weaning and naloxone on concentrations of luteinizing hormone (LH) at 20 days postpartum were examined. March-lambing Finnish Landrace x Southdown ewes (n = 20) were bled via jugular venipuncture at 10-min intervals for 4 h. Naloxone (1 mg/kg bodyweight) was administered i.v. at 60, 120, and 180 min. Treatment groups were suckled (S), weaned on Day 17 (W), suckled plus naloxone (SN), and weaned plus naloxone (WN). Mean concentrations of LH were calculated for 0-60, 70-120, 130-180, and 190-240 min time intervals. Analysis of variance indicated a group effect (p = 0.03) and a group x time interaction (p = 0.02). Concentrations of LH followed a cubic pattern in SN (p = 0.03) and WN (p = 0.08) ewes, whereas LH levels decreased (p less than 0.05) in a pattern consisting of linear and quadratic trends in S and W ewes. Concentrations of LH in S and W ewes were similar at 0-60 and 190-240 min. W ewes had lower (p less than 0.05) concentrations of LH than S ewes at 70-120 and 130-190 min. Further analysis revealed that LH was elevated in SN ewes (p = 0.01) and WN ewes (p = 0.07) at 70-120 min, but was not significantly elevated at 130-180 min. At 190-240 min LH was increased in SN ewes (p = 0.03), but LH levels in WN ewes were similar to those of SN ewes as well as to those of S control ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

19.
A transient increase in gonadotropin secretion between 6 and 20 weeks of age is critical for the onset of puberty in bull calves. To try and hasten the onset of puberty, bull calves were treated (s.c.) with 3 mg of bLH (n = 6) or 4 mg of bFSH (n = 6) once every 2 days, from 4 to 8 weeks after birth; control calves received saline (n = 6). At 4 and 8 weeks of age, mean LH concentrations were higher (P < 0.05) in bLH-treated (2.3 +/- 0.04 ng/ml and 1.20 +/- 0.04 ng/ml) as compared to control calves (0.50 +/- 0.1 ng/ml and 0.70 +/- 0.10 ng/ml). Mean serum FSH concentrations at 4 and 8 weeks of age, were higher (P < 0.05) in bFSH-treated (1.60 +/- 0.20 ng/ml and 1.10 +/- 0.2 ng/ml) as compared to control calves (0.38 +/- 0.07 ng/ml and 0.35 +/- 0.07 ng/ml). The age at which scrotal circumference (SC) first reached > or = 28 cm, occurred earlier (P < 0.05) in bFSH-treated calves as compared to saline-treated calves (39.3 +/- 1.3 and 44.8 +/- 1.3 weeks of age, respectively). Based on testicular histology at 56 weeks of age, treatment with bFSH resulted in greater (P < 0.05) numbers of Sertoli cells (5 +/- 0.2, 6 +/- 0.3 and 5 +/- 0.3 in bLH-, bFSH- and saline-treated calves, respectively); elongated spermatids (42 +/- 2, 57 +/- 8 and 38 +/- 5 in bLH-, bFSH- and saline-treated calves, respectively) and spermatocytes (31 +/- 3, 38 +/- 3 and 29 +/- 2 in bLH-, bFSH- and saline-treated calves, respectively) per seminiferous tubule. We concluded that treatment of bull calves with bFSH from 4 to 8 weeks of age increased testicular growth (SC); hastened onset of puberty (SC > or = 28 cm); and enhanced spermatogenesis.  相似文献   

20.
Fifteen ovariectomized ewes were treated with implants (s.c.) creating circulating luteal progesterone concentrations of 1.6 +/- 0.1 ng ml-1 serum. Ten days later, progesterone implants were removed from five ewes which were then infused with saline for 64 h (0.154 mol NaCl l-1, 20 ml h-1, i.v.). Ewes with progesterone implants remaining were infused with saline (n = 5) or naloxone (0.5 mg kg-1 h-1, n = 5) in saline for 64 h. At 36 h of infusion, all ewes were injected with oestradiol (20 micrograms in 1 ml groundnut oil, i.m.). During the first 36 h of infusion, serum luteinizing hormone (LH) concentrations were similar in ewes infused with saline after progesterone withdrawal and ewes infused with naloxone, but with progesterone implants remaining (1.23 +/- 0.11 and 1.28 +/- 0.23 ng ml-1 serum, respectively, mean +/- SEM, P greater than 0.05). These values exceeded circulating LH concentrations during the first 36 h of saline infusion of ewes with progesterone implants remaining (0.59 +/- 0.09 ng ml-1 serum, P less than 0.05). The data suggested that progesterone suppression of tonic LH secretion, before oestradiol injection, was completely antagonized by naloxone. After oestradiol injection, circulating LH concentrations decreased for about 10 h in ewes of all groups. A surge in circulating LH concentrations peaked 24 h after oestradiol injection in ewes infused with saline after progesterone withdrawal (8.16 +/- 3.18 ng LH ml-1 serum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号