首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four kinds of thermostable chitinase were isolated from the cell-free culture broth of Bacillus licheniformis X-7u by successive column chromatographies on Butyl-Toyopearl, Q-Sepharose, and Sephacryl S-200. We named the enzymes chitinases I(89 kDa), II(76 kDa), III(66 kDa) and IV(59 kDa). Chitinases II, III and IV possessed extremely high optimum temperatures (70-80 degrees C), showing remarkable heat stability. Chitinases II, III and IV produced (GlcNAc)2 and GlcNAc from colloidal chitin and chitinase I predominantly produced (GlcNAc)2. The action pattern of chitinase I on PN-(GlcNAc)4 also showed a stronger propensity to cleave off the (GlcNAc)2 unit from the non-reducing end than the other three chitinases. Chitinases II, III and IV catalyzed a transglycosylation reaction that converted (GlcNAc)4 into (GlcNAc)6.  相似文献   

2.
beta-Glucanase activities were found associated with Candida albicans and their culture fluids. Mild acid treatment of the organisms led to rapid inactivation of beta-glucanase activities, the degree of loss increasing with the age of the cultures; the results suggested an extracytoplasmic location of the cell-associated enzymes. Most of the beta-glucanase activities were associated with the cell walls in organisms phenotypically resistant to amphotericin B methyl ester (AME). Two proteins (I and II) exhibiting beta-glucanase activity were isolated and purified by conventional procedures from cell-free extracts, cell-wall autolysates and culture fluids of C. albicans sensitive and phenotypically resistant to AME. The purified enzymes appeared homogeneous on isoelectric focusing, gel electrophoresis and ultracentrifugation, with molecular weights of 150000 (I) and 49000 (II). Both enzymes hydrolysed cell walls purified from AME-sensitive and phenotypically resistant organisms, but showed different substrate specificities and patterns of activity. Enzyme II hydrolysed (1 leads to 3)-beta-glycans by an endolytic mechanism releasing laminaritetraose as the initial product. Glucose was the only product released by enzyme I. The properties of th individual enzymes were unaffected by their localization or the age of the culture of the organisms. The loosening of the polysaccharide packing by ultrasonic treatment of cell walls purified from AME-resistant organisms increased the beta-glucanase activities bound to the walls, but did not solubilize them. Autolysis of cell walls released 58 to 66% of their beta-glucanase activity in 20 h, but no further release was attained on prolonged incubation. The amount of beta-glucanase activity released by autolysis was increased by a variety of pretreatments. Diethyl pyrocarbonate inhibited beta-glucanase activity and prevented autolysis. Evidence is presented indicating that interactions with lipids, polysaccharides and other cell wall proteins may be involved in the control of the activity of the cell wall-associated beta-glucanases in organisms phenotypically resistant to AME.  相似文献   

3.
4.
Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.  相似文献   

5.
Carboxylase Levels and Carbon Dioxide Fixation in Baker''s Yeast   总被引:1,自引:0,他引:1  
Levels of pyruvate carboxylase (PC), phosphopyruvate carboxylase (PEPC), and malate dehydrogenase (decarboxylating) were compared in wild-type bakers' yeast (I), a cytoplasmic-respiratory mutant (II), a biotin-deficient wild-type yeast (III), and a biotin-deficient respiratory mutant (IV). PC activities were greatly reduced in III and IV, whereas PEPC was reduced in II and IV. Malate dehydrogenase (decarboxylating) could not be detected in any of the yeasts. With yeast I growing on glucose as the sole carbon source, PEPC decreased to negligible levels during the logarithmic phase of growth (glucose repression effect), whereas PC increased. Both enzymes reverted to their original levels during the stationary phase, when glucose in the medium was exhausted. In agreement with the leading role of PC for CO(2) assimilation, the rates of (14)CO(2) fixation in yeasts I and II were approximately equal and were much higher than that in yeast IV. With I and II, most of the (14)C was distributed similarly in oxalacetate derivatives; with yeast IV, most of (14)C appeared in a compound apparently unrelated to CO(2) fixation via C(4)-dicarboxylic acids.  相似文献   

6.
KA-prep, a culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune, has an activity to form protoplasts from S. commune mycelia. alpha-1,3-Glucanase, which was isolated from an ammonium sulfate fraction of 0-30% saturation of KA-prep, gave the protoplast-forming activity to an ammonium sulfate fraction of 30-50% saturation of KA-prep, which contained chitinase(s) and beta-glucanase(s) but was inactive in the protoplast formation. Chitinase(s) and beta-glucanase(s) in the ammonium sulfate fraction of 30-50% saturation were separated by DEAE-cellulofine A-500 column chromatography, and the protoplast-forming activity appeared when the chitinase preparation was mixed with the alpha-1,3-glucanase. The beta-glucanase preparation was not effective for the protoplast formation whereas its addition enhanced the protoplast-forming activity of the mixture of alpha-1,3-glucanase and the chitinase preparation. The chitinase preparation contained two chitinases (chitinase I and II). Chitinase I showed the protoplast-forming activity with alpha-1,3-glucanase, but chitinase II did not. Chitinase I, a monomeric protein with a molecular weight of 41,000, was active toward colloidal chitin and ethylene glycol chitin. Chitinase I produced predominantly N,N'-diacetylchitobiose and N,N',N"-triacetylchitotriose from colloidal chitin, and the enzyme was inactive to p-NP-beta-D-N-acetylglucosaminide, suggesting that it was an endo-type enzyme. The N-terminal amino acid sequence of chitinase I (A L A T P T L N V S A S S G M) had no sequential identity to those of known chitinases.  相似文献   

7.
Five enzymes designated chitinase I, IIa, IIb, III, and IV have been isolated from the hepatopancreas of Pandalus borealis in a procedure including column chromatography on Q-Sepharose, Sephacryl S-200, phenyl-Superose and Superdex 75. The isolated enzymes were analysed by SDS PAGE. Chitinase I, III, and IV gave only one major band corresponding to 54–55 kDA. Chitinase IIa showed one major band at 61 kDA and two diminutive bands at 17 and 55 kDa, while chitinase IIb gave two major bands at 17 and 44 kDa. Estimated by gel filtration, the native molecular weights of chitinase I, IIa, IIb, III, and IV were 61, 69, 39, 57, and 54 kDa, respectively. The substrate and reaction specificities of the isolated chitinases were investigated, and the results show that the isolated enzymes are true chitinases. They do not hydrolyse N,N′-diacetylchitobiose or p-Nitrophenyl-N-acetyl-β-D-glucosaminide, but express activities when longer chitooligosaccharides or nitrophenylated chitooligosaccharides are used as substrates. Chitinase I and IIa gave an initial random cleavage pattern and might be classified as endochitinases, while chitinase III and IV released dimeric units from the substrates and might be termed chitobiosidases.  相似文献   

8.
Coenzymic activities of the following NADP derivatives were investigated: 2'-O-(2-carboxyethyl)phosphono-NAD (I), N6-(2-carboxyethyl)-NADP (II), 2'-O-(2-carboxyethyl)phosphono-N6-(2-carboxyethyl)-NAD (III), 2'-O-[N-(2-aminoethyl)carbamoylethyl]phosphono-NAD (IV), N6-[N-(2-aminoethyl)carbamoylethyl]-NADP (Va), 2',3'-cyclic NADP, and 3'-NADP. Derivatives I and IV show the effects of modification at the 2'-phosphate group, and derivatives II and Va show those at the 6-amino group of NADP. As for enzymes, alcohol, isocitrate, 6-phosphogluconate, glucose, glucose-6-phosphate, and glutamate dehydrogenases were used. These enzymes were grouped on the basis of the ratio of the activities for NAD and NADP into NADP-specific enzymes (ratio less than 0.01), NAD(P)-specific enzymes (0.01 less than ratio less than 100), and NAD-specific enzymes (ratio greater than 100). For NADP-specific enzymes, modifications at the 2'-phosphate group of NADP caused great loss of cofactor activity. The relative cofactor activities (NADP = 100%) of derivatives I and IV for these enzymes were 0.5-20 and 0.01-0.5%, respectively. On the other hand, NAD(P)-specific enzymes showed several types of responses to the NADP derivatives. The relative cofactor activities of I and IV for Leuconostoc mesenteroides and Bacillus stearothermophilus glucose-6-phosphate dehydrogenases and beef liver glutamate dehydrogenase were 60-200%; whereas, for B. megaterium glucose dehydrogenase and L. mesenteroides alcohol dehydrogenase, the values were 0.8-8%. For NAD-specific enzymes, these values were 20-50%. The relative cofactor activities of 2',3'-cyclic NADP and 3'-NADP were very low (less than 0.2%) except for beef liver glutamate dehydrogenase, B. stearothermophilus glucose-6-phosphate dehydrogenase, and horse liver alcohol dehydrogenase. Kinetic studies showed that the losses of the cofactor activity of NADP by these modifications were mainly due to the increase of the Km value. The mechanisms of coenzyme specificity of dehydrogenases are discussed. Unlike the 2'-phosphate group, the 6-amino group is common to NAD and NADP, and the effects of modification at the 6-amino group were independent of the coenzyme specificity of enzymes used for the assay. Derivatives II and Va had high relative cofactor activities (65-130%) for most of the enzymes except for isocitrate and glucose dehydrogenases (less than 1%) and L. mesenteroides alcohol dehydrogenase (20-60%). The cofactor activity of derivative III was generally lower than those of I and II.  相似文献   

9.
Long J  Wang X  Gao H  Liu Z  Liu C  Miao M  Liu J 《Life sciences》2006,79(15):1466-1472
Malonaldehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines to modify proteins to inactivity enzymes and also modify nucleosides to cause mutagenicity. Mitochondrial dysfunction is a major contributor to aging and age-associated diseases. We hypothesize that accumulated MDA due to mitochondrial dysfunction during aging targets mitochondrial enzymes to cause further mitochondrial dysfunction and contribute to aging and age-associated diseases. We investigated the effects of MDA on mitochondrial respiration and enzymes (membrane complexes I, II, III and IV, and dehydrogenases, including alpha-ketoglutaric dehydrogenase (KGDH), pyruvate dehydrogenase (PDH), malate dehydrogenase (MDH)) in isolated rat liver mitochondria. MDA showed a dose-dependent inhibition on mitochondrial NADH-linked respiratory control ratio (RCR) and ADP/O ratio declined from the concentrations of 0.2 and 0.8 micromol/mg protein, respectively, and succinate-linked mitochondrial RCR and ADP/O ratio declined from 1.6 and 0.8 micromol/mg protein. MDA also showed dose-dependent inhibition on the activity of PDH, KGDH and MDH significantly from 0.1, 0.2 and 2 micromol/mg protein, respectively. Activity of the complexes I and II was depressed by MDA at 0.8 and 1.6 micromol/mg protein. However, MDA did not affect activity of complexes III and IV in the concentration range studied (0-6.4 micromol/mg protein). These results suggest that MDA can cause mitochondrial dysfunction by inhibiting mitochondrial respiration and enzyme activity, and the sensitivity of the enzymes examined to MDA is in the order of PDH>KGDH>complexes I and II>MDH>complexes III and IV.  相似文献   

10.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

11.
In Escherichia coli K12 the biosynthetic pathway of lysine, methionine and threonine is characterized by three isofunctional aspartokinases and two homoserine dehydrogenases. A single polypeptide chain carries the threonine-sensitive aspartokinase and homoserine dehydrogenase (AK I-HDH I), and a different polypeptide chain carries the methionine-repressible aspartokinase and homoserine dehydrogenase (AK II-HDH II). Immuno-adsorbants prepared with rabbit antibodies against AK I-HDH I bind the lysine-sensitive aspartokinase (AK III), the AK II-HDH II, and the homoserine kinase (HSK), an enzyme of the threonine biosynthetic pathway. Saturation of the immunoadsorbant with AK I-HDH I results in a decreased binding capacity for the other enzymes. Displacement of bound AK III or HSK can be obtained with pure AK I-HDH I, showing that the affinity of the antibodies to homologous antigens is higher than to heterologous ones. Immunoadsorbants prepared with anti-HSK antibodies show the same type of recognition: binding of the three aspartkinases and a capacity to displace the heterologous antigens bound. Accordingly, the same antibodies, implicated in the binding of the homologous antigen, bind the other enzymes. None of the other enzymes of the pathway, or the other kinases tested are recognized by the two immunoadsorbants. It can be postulated that in E. coli K12, duplication of a common ancestor gene gave rise to the three aspartokinases and to the homoserine kinase; two of the genes coding for the aspartokinases fused with those coding for the homoserine dehydrogenases. Indicating that only few epitopes are shared by these enzymes, by conventional immuno-diffusion techniques no precipitation lines appeared with antibodies against AK I-HDH I and the other proteins.  相似文献   

12.
Genomic DNA for a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves and sequenced. The deduced amino acid sequence shows 50 to 59% identity to class IV chitinases from other plants. The yam chitinase, however, has an additional sequence of 8 amino acids (a C-terminal extension) following the cysteine that was reported as the last amino acid for other class IV chitinases; this extension is perhaps involved in subcellular localization. A homology model based on the structure of a class II chitinase from barley was used as an aid to interpreting the available data. The analysis suggests that the class IV enzyme recognizes an even shorter segment of the substrate than class I or II enzymes. This observation might help to explain why class IV enzymes are better suited to attack against pathogen cell walls.  相似文献   

13.
以西瓜尖镰孢菌诱导、提纯的豇豆抗真菌 I类几丁质酶 N端前 1 0个氨基酸序列测定的基础上 ,设计合成了引物 ,运用 PCR等分子生物学技术 ,从豇豆基因组中分离克隆了该特异几丁质酶成熟蛋白基因 ,测定分析了其全序列。该新基因全长 894bp,无内含子 ;具 Aat I、Aat II、Bgl I、Dpn I、Dpn II、Eco R II、Hae I、Hae II、Hae III、Hinf I、Hpa II、Mae II、Mae III、Nba I、Oxa I和 Sst IV酶切位点 43个 ;豇豆、Vigna unguiculata、菜豆、豌豆、烟草、小麦、水稻的同源性依次递减。扩增克隆了菜豆几丁质酶信号肽基因 ,并将其与豇豆几丁质酶成熟蛋白基因连接 ,再与 p BI1 2 1重组 ,成功构建了特异几丁质酶基因的植物表达载体 ,为进一步培育抗真菌病转基因西瓜新品种打下了坚实基础。  相似文献   

14.
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.  相似文献   

15.
Impairments in mitochondrial function have been proposed to play an important role in the pathogenesis of diabetes. Atherosclerotic coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated low density lipoproteins (glyLDL) and oxidized LDL (oxLDL) were detected in patients with diabetes. Our previous studies demonstrated that oxLDL and glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). The present study examined the effects of glyLDL and oxLDL on mitochondrial respiration, membrane potential and the activities and proteins of key enzymes in mitochondrial electron transport chain (mETC) in cultured porcine aortic EC (PAEC). The results demonstrated that glyLDL or oxLDL significantly reduced oxygen consumption in Complex I, II/III and IV of mETC in PAEC compared to LDL or vehicle control using oxygraphy. Incubation with glyLDL or oxLDL significantly reduced mitochondrial membrane potential, the activities of mitochondrial ETC enzymes - NADH dehydrogenase (Complex I), succinate cytochrome c reductase (Complex II + III), ubiquinol cytochrome c reductase (Complex III), and cytochrome c oxidase (Complex IV) in PAEC compared to LDL or control. Treatment with oxLDL or glyLDL reduced the abundance of subunits of Complex I, ND1 and ND6 in PAEC. However, the effects of oxLDL on mitochondrial activity and proteins were not significantly different from glyLDL. The findings suggest that the glyLDL or oxLDL impairs mitochondrial respiration, as a result from the reduction of the abundance of several key enzymes in mitochondria of vascular EC, which potentially may lead to oxidative stress in vascular EC, and the development of diabetic vascular complications.  相似文献   

16.
Summary Structural analysis of hyaline cartilage extracellular matrix components from the ribs and knee joint of a stillborn female with type II achondrogenesis was carried out. The absence of type II collagen, a decrease in the amount of proteoglycans (PG), and structural changes in PG, namely, increased electrophoretic mobility of PG, lower relative content of chondroitin 4-sulfate (Ch4-S), lower molecular weight and decreased total chondroitin sulfate (ChS) sulfation, were detected. Increased amounts of type I and type III collagens, atypical for hyaline cartilage, were revealed. Among the link proteins (LPs), a large protein with a mol. wt. of 48 kDa was predominant. Molecular and cellular mechanisms of the pathogenesis of achondrogenesis (chondrogenesis imperfecta) are discussed. The data obtained suggest that the primary defect in type II achondrogenesis involves ChS or type II collagen synthesis.  相似文献   

17.
Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.  相似文献   

18.
19.
Plant cell wall-degrading enzymes produced by microorganisms possess important biotechnological applications, including biofuel production. Some anaerobic bacteria are able to produce multienzymatic complexes called cellulosomes while filamentous fungi normally secrete individual hydrolytic enzymes that act synergistically for polysaccharide degradation. Here, we present evidence that the fungus Trichoderma harzianum, cultivated in medium containing the agricultural residue sugarcane bagasse, is able to secrete multienzymatic complexes. The T. harzianum secretome was firstly analyzed by 1D-BN (blue native)-PAGE that revealed several putative complexes. The three most intense 1D-BN-PAGE bands, named complexes [I], [II], and [III], were subsequently subjected to tricine SDS-PAGE that demonstrated that they were composed of smaller subunits. Zymographic assays were performed using 1D-BN-PAGE and 2D-BN/BN-PAGE demonstrating that the complexes bore cellulolytic and xylanolytic activities. The complexes [I], [II], and [III] were then trypsin digested and analyzed separately by LC-MS/MS that revealed their protein composition. Since T. harzianum has an unsequenced genome, a homology-driven proteomics approach provided a higher number of identified proteins than a conventional peptide-spectrum matching strategy. The results indicate that the complexes are formed by cellulolytic and hemicellulolytic enzymes and other proteins such as chitinase, cutinase, and swollenin, which may act synergistically to degrade plant cell wall components.  相似文献   

20.
Six endoglucanases (Endo I, II, III, IV, V, and VI), three exoglucanases (Exo I, II, and III), and a beta-glucosidase (beta-gluc I) isolated from a commercial cellulase preparation of Trichoderma viride origin were examined as to their activities on xylan ex oat spelts. Endo I, II, and III as well as Exo II and III showed no activity toward xylan and were classified as specific glucanases. Less specificity was found for the endoglucanases Endo IV, V, and VI, Exo I, and beta-gluc I, whose enzymes were able to hydrolyze xylan. With respect to product formation these xylanolytic cellulases fit the classification of xylanases generally accepted in the literature. Kinetic experiment with xylan, CM-cellulose, and p-nitrophenyl-beta-D-glucoside revealed that Endo IV, V, an VI and Exo I prefer to hydrolyze beta-1, 4-D-glucosidic linkages. beta-Gluc I showed no clear substrate preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号