首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  The aim of this study was to investigate the influence of low iron availability on biofilm formation and adherence to HEp-2 cells of enteroaggregative Escherichia coli (EAEC) strains isolated from diarrhoea cases.
Methods and Results:  The ability of EAEC to form biofilm on a plastic surface was evaluated quantitatively and qualitatively after 3 and 18 h of incubation of strains with or without the iron chelator 2,2-dipyridyl. When submitted to low iron conditions, prototype EAEC 042 strain showed a decrease in biofilm formation. Conversely, an increase in biofilm formation was observed for the clinical EAEC strains cultured in restricted iron condition. Moreover, the reduction of iron concentration inhibited the aggregative adherence to HEp-2 cells of all EAEC strains tested. However, all effects promoted by iron chelation were suppressed by thiourea.
Conclusions:  Low iron availability may modulate biofilm formation and adhesive properties of EAEC strains to HEp-2 cells.
Significance and Impact of the Study:  The data obtained in this study provide useful insights on the influence of low iron conditions possibly associated with redox stress on the pathogenesis of EAEC strains.  相似文献   

2.
Binding to a specific receptor is an essential step for most enteropathogens to initiate an intestinal infection. We analyzed the inhibitory effect of human milk and its protein components on adhesion of two diarrheagenic Escherichia coli strains, diffusely adherent E. coli (DAEC) and enteroaggregative E. coli (EAEC), to HeLa cells. Defatted milk, whey proteins, immunoglobulin and non-immunoglobulin fractions, in concentrations lower than usually found in whole milk, inhibited both DAEC and EAEC adhesion, indicating that human milk components may contribute to the defense of the infants against enteropathogens.  相似文献   

3.
Diarrhoeagenic Escherichia coli strains of serotype O111:H12 are characterized by their aggregative pattern of adherence on cultured epithelial cells and thus are considered enteroaggregative E. coli (EAEC). We have previously shown that these EAEC strains lack the genes encoding the aggregative fimbriae I and II described in other heterologous EAEC strains. In this paper, we show compelling data suggesting that a plasmid-encoded outer membrane 58 kDa protein termed aggregative protein 58 (Ap58) produced by EAEC O111:H12 strains, is associated with the adherence capabilities and haemagglutination of animal red blood cells. This conclusion is supported by several lines of evidence: (i) adherent O111:H12 strains are able to produce Ap58; (ii) non-adherent O111:H12 strains are unable to produce Ap58; (iii) antibodies raised against Ap58 inhibited adherence and haemagglutination of epithelial and bovine red blood cells, respectively; (iv) a non-adherent E. coli K-12 host strain containing the ap58 gene determinant on plasmid pVM15 displayed abundant adherence to cultured HEp-2 cells; and (v) the purified Ap58 bound specifically to HEp-2 and bovine red blood cells. Our findings indicate that the aggregative adherence in the O111:H12 strains may be also mediated by non-fimbrial adhesins. We believe our data contribute to the understanding of the adherence mechanisms of these organisms.  相似文献   

4.
Ochoa TJ  Cleary TG 《Biochimie》2009,91(1):30-34
Much has been learned in recent years about the mechanisms by which breastfeeding improves child health and survival. However, there has been little progress in using these insights to improve pediatric care. Factors that are important for protecting the breast fed infant might be expected to decrease the adverse effects of weaning on diarrhea, growth, and development. Lactoferrin, an iron-binding protein with multiple physiological functions (anti-microbial, anti-inflammatory, and immunomodulatory), is one of the most important proteins present in mammalian milk. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Thus, lactoferrin may protect infants from gastrointestinal infection by preventing the attachment by enteropathogens in the gut. Recently several clinical trials in children have started to address this issue. Whether lactoferrin can prevent a significant portion of diarrheal disease remains to be determined.  相似文献   

5.
Enteroaggregative Escherichia coli (EAEC) is defined by aggregative adherence (AA) to HEp-2 cells, where bacteria display adherence to cell surfaces and also to the intervening substratum in a stacked-brick configuration. We previously showed that an AraC homologue designated AggR is required for the expression of plasmid-encoded genes that mediate AA of EAEC strain 042. In this study, we hypothesized that AggR also controls the expression of other virulence determinants in EAEC 042. Using proteomic and microarray analysis, we identified for the first time that AggR activates the expression of chromosomal genes, including 25 contiguous genes (aaiA-Y), which are localized to a 117 kb pathogenicity island (PAI) inserted at pheU. Many of these genes have homologues in other Gram-negative bacteria and were recently proposed to constitute a type VI secretion system (T6SS). AaiC was identified as a secreted protein that has no apparent homologues within GenBank. EAEC strains carrying in-frame deletions of aaiB, aaiG, aaiO or aaiP still synthesized AaiC; however, AaiC secretion was abolished. Cloning of aai genes into E. coli HB101 suggested that aaiA-P are sufficient for AaiC secretion. A second T6SS was identified within the pheU PAI that secretes a protein unrelated by sequence identity to AaiC. Distribution studies indicated that aaiA and aaiC are commonly found in EAEC isolates worldwide, particularly in strains defined as typical EAEC. These data support the hypothesis that AggR is a global regulator of EAEC virulence determinants, and builds on the hypothesis that T6SS is an importance mediator of pathogenesis.  相似文献   

6.
We characterized two Shiga toxin-producing Escherichia coli (STEC) O86:HNM isolates from a patient with hemolytic uremic syndrome (HUS) or bloody diarrhea. Both of them did not possess the eaeA gene. However, the isolate from a HUS patient carried genetic markers of enteroaggregative E. coli (EAEC) and showed aggregative adherence pattern to HEp-2 cells. The other isolate from bloody diarrhea, which was negative with EAEC markers, was diffusely adhered to HEp-2 cells. The stx2 gene in both E. coli O86:HNM strains was encoded in each infectious phage, which was partially homologous to that of strain EDL933, a STEC O157:H7. These results will help to explain the genotypic divergences of STEC.  相似文献   

7.
Neutrophils are the most abundant leukocyte and have a short lifespan, dying by apoptosis approximately five days after leaving the bone marrow. Their apoptosis can be delayed at sites of inflammation to extend their functional lifespan, but inappropriate inhibition of apoptosis contributes to chronic inflammatory disease. Levels of the physiological iron chelator lactoferrin are raised at sites of inflammation and we have shown previously that iron-unsaturated lactoferrin inhibited human neutrophil apoptosis, but the mechanisms involved were not determined. Here we report that the anti-apoptotic effect of lactoferrin is dependent upon its iron saturation status as iron-saturated lactoferrin did not affect neutrophil apoptosis. We also show that the effect of lactoferrin is mediated at an early stage in apoptosis as it inhibited activation of sphingomyelinase, generation of ceramide, activation of caspase 8 and Bax and cleavage of Bid. Lactoferrin did not inhibit apoptosis induced by exogenous ceramide, supporting the proposal that it acts upstream of ceramide generation. We therefore conclude that raised lactoferrin levels are likely to contribute to chronic inflammation by delaying neutrophil apoptosis and that this is achieved by inhibiting proximal apoptotic signaling events.  相似文献   

8.
9.
Cronobacter sakazakii is now recognized as an opportunistic pathogen and has been implicated in rare but severe cases of necrotizing enterocolitis, meningitis, and sepsis in neonates. The first step in bacterial pathogenesis requires that the organism adheres to host cells surfaces; therefore, agents that inhibit adherence might be useful for preventing infections. Lactoferrin, an iron binding protein found in milk, has been shown to inhibit bacterial adherence by direct interaction and disruption of bacterial surfaces. Therefore, the goal of this research was to assess the ability of two different types of bovine lactoferrin, alone and in combination with a 1:1 blend of galactooligosaccharides and polydextrose, to inhibit adherence of C. sakazakii to a HEp-2 human cell line. Results showed that the adherence of C. sakazakii was significantly reduced at a minimum lactoferrin concentration of 10 mg/ml. However, in combination with the oligosaccharide blend, no synergistic effect was observed in adherence inhibition. These results suggest that lactoferrin might interact with C. sakazakii and directly inhibit adhesion to tissue culture cells.  相似文献   

10.
Enteropathogenic Escherichia coli (EPEC) is a significant cause of paediatric diarrhoea worldwide. Virulence requires adherence to intestinal epithelial cells, mediated in part through type IV bundle-forming pili (BFP), and the EPEC protein Tir. Tir is inserted into the enterocyte plasma membrane (PM), resulting in the formation of actin-rich pedestals. Tir is translocated by the type III secretion system (TTSS), through a pore comprised of EPEC proteins inserted into the PM. Here, we demonstrate that in the absence of BFP, EPEC adherence, effector translocation and pedestal formation are dependent on lipid rafts. Lipid raft disruption using methyl-beta-cyclodextrin (MbetaCD) decreased adherence by an EPEC BFP-deficient strain from 85% to 1%. Translocation of the effectors Tir and EspF was blocked by MbetaCD treatment, although the TTSS pore still formed. MbetaCD treatment after Tir delivery decreased pedestal formation by EPEC from 40% to 5%, but not by the related pathogen E. coli O157:H7 which uses a different Tir-based mechanism. In contrast, EPEC expressing the BFP can circumvent the requirement for membrane cholesterol. This suggests that lipid rafts play a role in virulence of this medically important pathogen.  相似文献   

11.
Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17‐2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST‐1 toxin, and dispersin in EAEC strain 042 but not in 17‐2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) is a human-specific pathogen that causes severe diarrhoea in young children. The disease involves intimate interaction between the pathogen and the brush border of enterocytes. During infection, EPEC uses a type III secretion system (TTSS) to inject several proteins into the infected cells, and these effector proteins modify specific processes in the host cell. We show that, upon infection, EPEC induces detachment of the infected host cells from the substratum, modification of focal adhesions (FA) in the infected cells and specific dephosphorylation of focal adhesion kinase (FAK). We also show that EPEC-induced cell detachment is dependent on FAK expression by the infected cells. Finally, we demonstrate that cell detachment, FA modification and FAK dephosphorylation are dependent on functional TTSS in the infecting EPEC. These results suggest that EPEC is using its TTSS to inject protein(s) into the infected cells, which can induce FAK dephosphorylation, as well as FAK-dependent FA modification and cell detachment. These processes are specific and probably play an important role in EPEC virulence.  相似文献   

13.
Many gram-negative bacteria share a closely related mechanism for secretion of virulence proteins. This complex machine, the type III secretion system, secretes virulence proteins in response to sensing the presence of target mammalian cells. We have found that recombinant human lactoferrin impairs the function of this system in two model organisms: Shigella and Enteropathogenic E. coli (EPEC). In the case of Shigella, there is loss and degradation of two proteins secreted by the type III mechanism, invasion plasmid antigens B and C (IpaB and IpaC); these proteins normally form a complex that causes Shigella to be taken up by host mammalian cells. In the case of EPEC, lactoferrin causes loss and degradation of E. coli secreted proteins A, B and D (EspABD) particularly EspB. These proteins are components of type III machinery and are known to be key elements of EPEC pathogenesis. Studies using purified EspB demonstrated that lactoferrin has a direct proteolytic effect on EspB that can be prevented by serine protease inhibitors. A synthetic peptide of the N-terminal 33 amino acids of lactoferrin caused loss of cell associated EspB but, unlike the whole lactoferrin molecule, did not caused degradation of EspB. Thus, in both model systems, brief exposure to lactoferrin causes loss and degradation of type III secretion system virulence proteins.  相似文献   

14.
Enteroaggregative Escherichia coli (EAEC) is distinguished by its characteristic aggregative adherence (AA) pattern to cultured epithelial cells. In this study we investigated the role of type I fimbriae (TIF) in the AA pattern to HEp-2 cells and in biofilm formation. Accentuation of this pattern was observed when the adherence assay was performed in the absence of mannose. This effect was observed in the prototype EAEC strain 042 (O44:H18), O128:H35 strains and for other EAEC serotypes. Antiserum against TIF decreased AA by 70% and 90% for strains 042 and 18 (O128:H35 prototype strain), respectively. A non-polar knockout of fimD, the TIF usher, in strains 042 and 18 resulted in inhibition of the accentuated AA pattern of approximately 80% and 70% respectively, and biofilm formation diminution of 49% for 042::fimD and 76% for 18::fimD. Our data evidence a role for TIF in the AA pattern and in EAEC biofilm formation, demonstrating that these phenotypes are multifactorial.  相似文献   

15.
A total of 919 Escherichia coli isolates from 125 children with diarrhoea (cases) and 98 controls were assayed for adherence to HEp-2 cells. Localised adherence was found only in isolates from cases. Diffuse, aggregative (AA), chain-like adherence (CLA) and variants of the AA pattern were found in both cases and controls. The AA isolates were tested for gene sequences associated with enteroaggregative E. coli (EAEC). Only 25% of the isolates hybridised with the EAEC probe, and the aafA, astA and pet gene sequences were found in 7.9%, 44.7% and 7.9% of the isolates, respectively. The aggA gene was not found, although 7.9% were positive for aggC. The CLA isolates reacted with the EAEC probe (55.6%), and the aggC, astA and pet gene sequences were found in 66.7%, 33.3% and 11.1%, respectively. The aggR (55.6%), aspU (55.6%), shf (33.3%) and she (22.2%) genes were also found in CLA isolates.  相似文献   

16.
Iron limitation may cause bacterial pathogens to grow more slowly; however, it may also stimulate these microorganisms to produce greater tissue damage, given that many virulence factors are controlled by the iron supply in the environment. The present study investigated the influence of low iron availability on the expression of proteins and surface sugar residues of two toxigenic strains of Corynebacterium diphtheriae subsp. mitis and evaluated their adherence to human group B erythrocytes and HEp-2 cells. A comparison was made between bacteria grown in (i) Trypticase soy broth (TSB), (ii) TSB treated with dipyridyl to deplete free iron, and (iii) TSB enriched with FeCl(3). The effects of iron concentration on adhesive properties were different for strains 241 and CDC-E8392, of the sucrose-fermenting and non-sucrose-fermenting biotypes, respectively. Iron-limited conditions enhanced interaction of strain 241 with erythrocytes and HEp-2 cells. Inhibition assays suggested the involvement of nonfimbrial protein combination 67-72p on hemagglutination of diphtheria bacilli grown under iron-limited conditions. Conversely, iron limitation inhibited adherence to glass and expression of electron-dense material on the bacterial surface. Lectin binding assays demonstrated a reduction in the number of sialic acid residues and an increase in D-mannose and D-galactose residues on the surfaces of both strains. Thus, iron exerts a regulatory role on adhesive properties of diphtheria bacilli, and low iron availability modulates the expression of C. diphtheriae surface carbohydrate moieties. The significant changes in the degree of lectin binding specific for D-mannose, D-galactose and sialic acid residues may have an effect on binding of host cells. The expression of dissimilar microbial virulence determinants may be coordinately controlled by common regulatory systems. For C. diphtheriae, the present results imply regulation of adherence and slime production as part of a global response to iron-limited environmental conditions that includes derepression of genes for the synthesis of cytotoxin and siderophores and for transport of the Fe(III)-siderophore complexes.  相似文献   

17.
Lactoferrin is a growth stimulant. The basis for this effect is not clear since it is not thought to be involved in iron uptake through endocytosis. Ferric lactoferrin supports external ferrous chelate formation by K562 and HeLa cells, and ferric lactoferrin stimulates the reduction of external ferric iron by cells. Ferric lactoferrin also stimulates NADH oxidase activity in isolated rat liver plasma membranes and stimulates amiloride sensitive proton release from K562 cells. The evidence that ferric lactoferrin can participate in oxidoreduction reactions at the plasma membrane leading to activation of Na+/H+ exchange provides an alternative explanation for the proliferative effect.  相似文献   

18.
Lactoferrin induces osteoblast proliferation and survival in vitro and is anabolic to bone in vivo. The molecular mechanisms by which lactoferrin exerts these biological actions are not known, but lactoferrin is known to bind to two members of the low-density lipoprotein receptor family, low- density lipoprotein receptor-related proteins 1 (LRP1) and 2 (LRP2). We have examined the role(s) of these receptors in the actions of lactoferrin on osteoblasts. We show that lactoferrin binds to cultured osteoblastic cells, and that LRP1 and LRP2 are expressed in several osteoblastic cell types. In primary rat osteoblastic cells, the LRP1/2 inhibitor receptor associated protein blocks endocytosis of lactoferrin and abrogates lactoferrin-induced p42/44 MAPK signaling and mitogenesis. Lactoferrin-induced mitogenesis is also inhibited by an antibody to LRP1. Lactoferrin also induces receptor associated protein-sensitive activation of p42/44 MAPK signaling and proliferation in osteoblastic human SaOS-2 cells, which express LRP1 but not LRP2. The mitogenic response of LRP1-null fibroblastic cells to lactoferrin is substantially reduced compared with that of cells expressing wild-type LRP1. The endocytic and signaling functions of LRP1 are independent of each other, because lactoferrin can activate mitogenic signaling in conditions in which endocytosis is inhibited. Taken together, these results 1) suggest that mitogenic signaling through LRP1 to p42/44 MAPKs contributes to the anabolic skeletal actions of lactoferrin; 2) demonstrate growth-promoting actions of a third LRP family member in osteoblasts; and 3) provide further evidence that LRP1 functions as a signaling receptor in addition to its recognized role in ligand endocytosis.  相似文献   

19.
Anti-complement effects of lactoferrin-derived peptides   总被引:2,自引:0,他引:2  
Lactoferrin is an important biological molecule with many functions such as modulation of the inflammatory response, iron metabolism and antimicrobial defense. One effect of lactoferrin is the inhibition of the classical complement pathway. This study reports that antimicrobial peptides derived from the N-terminal region from both human and bovine lactoferrin, lactoferricin H and lactoferricin B, respectively, inhibit the classical complement pathway. No inhibitory effect of these peptides was observed on the alternative complement pathway in an AP50 assay. However, lactoferricin B reduced the inhibitory properties of serum against Escherichia coli in a concentration dependent manner. These results suggest that the N-terminal region of lactoferrin is the important part in the inhibition of complement activation and that these peptides possess other important properties than their antimicrobial effect.  相似文献   

20.
Enteroaggregative Escherichia coli (EAEC) is emerging as a significant diarrheal pathogen in multiple population groups. Although most commonly associated with pediatric diarrhea in developing countries, EAEC is also linked to diarrhea in adults including HIV-positive patients and travelers and has been a cause of food-borne outbreaks in the industrialized world. Current data suggest that one set of virulence elements is not associated with all EAEC strains, but that combinations of multiple factors prevail. Pathogenesis is believed to be initiated with adherence to the terminal ileum and colon in an aggregative, stacked-brick-type pattern by means of one of several different hydrophobic aggregative adherence fimbriae. Some strains of EAEC may then elaborate cytotoxins including the plasmid-encoded toxin and the enterotoxins, EAST1 and ShET1. An AraC homolog termed AggR regulates several genes contributing to fimbrial biogenesis in 'typical EAEC strains'. AggR has now also been shown to regulate genes on a chromosomal island. Sequencing of the EAEC type strain 042 completed at the Sanger Center has revealed two other chromosomal islands that are being explored for their pathogenetic potential. This article reviews these virulence elements and presents on-going areas of research in EAEC pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号