首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human gene encoding a polynucleotide phosphorylase (hPNPase) has been recently identified as strongly up-regulated in two processes leading to irreversible arrest of cell division: progeroid senescence and terminal differentiation. Here, we demonstrate that the hPNPase is localized in mitochondria. Our finding suggests the involvement of mitochondrial RNA metabolism in cellular senescence.  相似文献   

2.
To fully comprehend cellular senescence, identification of relevant genes involved in this process is mandatory. Human polynucleotide phosphorylase (hPNPase(OLD-35)), an evolutionarily conserved 3', 5' exoribonuclease mediating mRNA degradation, was first identified as a predominantly mitochondrial protein overexpressed during terminal differentiation and senescence. Overexpression of hPNPase(OLD-35) in human melanoma cells and melanocytes induces distinctive changes associated with senescence, potentially mediated by direct degradation of c-myc mRNA by this enzyme. hPNPase(OLD-35) contains two RNase PH (RPH) domains, one PNPase domain, and two RNA binding domains. Using deletion mutation analysis in combination with biochemical and molecular analyses we now demonstrate that the presence of either one of the two RPH domains conferred similar functional activity as the full-length protein, whereas a deletion mutant containing only the RNA binding domains was devoid of activity. Moreover, either one of the two RPH domains induced the morphological, biochemical, and gene expression changes associated with senescence, including degradation of c-myc mRNA. Subcellular distribution confirmed hPNPase(OLD-35) to be localized both in mitochondria and the cytoplasm. The present study elucidates how a predominantly mitochondrial protein, via its localization in both mitochondria and cytoplasm, is able to target a specific cytoplasmic mRNA, c-myc, for degradation and through this process induce cellular senescence.  相似文献   

3.
4.
Human polynucleotide phosphorylase (hPNPase) is a 3′-to-5′ exoribonuclease that degrades specific mRNA and miRNA, and imports RNA into mitochondria, and thus regulates diverse physiological processes, including cellular senescence and homeostasis. However, the RNA-processing mechanism by hPNPase, particularly how RNA is bound via its various domains, remains obscure. Here, we report the crystal structure of an S1 domain-truncated hPNPase at a resolution of 2.1 Å. The trimeric hPNPase has a hexameric ring-like structure formed by six RNase PH domains, capped with a trimeric KH pore. Our biochemical and mutagenesis studies suggest that the S1 domain is not critical for RNA binding, and conversely, that the conserved GXXG motif in the KH domain directly participates in RNA binding in hPNPase. Our studies thus provide structural and functional insights into hPNPase, which uses a KH pore to trap a long RNA 3′ tail that is further delivered into an RNase PH channel for the degradation process. Structural RNA with short 3′ tails are, on the other hand, transported but not digested by hPNPase.  相似文献   

5.
Sphingolipid research has surged in the past two decades and has produced a wide variety of evidence supporting the role of this class of molecules in mediating cellular growth, differentiation, senescence, and apoptosis. Ceramides are a subgroup of sphingolipids (SLs) that are directly involved in the process of initiation of apoptosis. We, and others, have recently shown that ceramides are capable of the formation of protein-permeable channels in mitochondrial outer membranes under physiological conditions. These pores are indeed good candidates for the pathway of release of pro-apoptotic proteins from the mitochondrial intermembrane space (IMS) into the cytosol to initiate intrinsic apoptosis. Here, we review recent findings on the regulation of ceramide channel formation and disassembly, highlighting possible implications on the initiation of the intrinsic apoptotic pathway.  相似文献   

6.
7.
8.
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.  相似文献   

9.
10.
The poor prognosis of pancreatic cancer patients using currently available therapies mandates novel therapeutics that combine anti-neoplastic potency with toxicity-minimizing cancer specificity. Employing an overlapping pathway screen to identify genes exhibiting coordinated expression as a consequence of terminal cell differentiation and replicative senescence, we identified human polynucleotide phosphorylase (hPNPase(old-35)), a 3',5'-exoribonuclease that exhibits robust growth-suppressing effects in a wide spectrum of human cancers. A limitation to the anti-neoplastic efficacy of hPNPase(old-35) relates to its lack of cancer specificity. The promoter of Progression Elevated Gene-3 (PEG-Prom), discovered in our laboratory via subtraction hybridization in a transformation progression rodent tumor model functions selectively in a diverse array of human cancer cells, with limited activity in normal cells. An adenovirus constructed with the PEG-Prom driving expression of hPNPase(old-35) containing a C-terminal Hemaglutinin (HA)-tag (Ad.PEG.hPNPase(old-35)) was shown to induce robust transgene expression, growth suppression, apoptosis, and cell-cycle arrest in a broad panel of pancreatic cancer cells, with minimal effects in normal immortalized pancreatic cells. hPNPase(old-35) expression correlated with arrest in the G(2)/M phase of the cell cycle and up-regulation of the cyclin-dependent kinase inhibitors (CDKI) p21(CIP1/WAF-1/MDA-6) and p27(KIP1). In a nude mouse xenograft model, Ad.PEG.hPNPase(old-35) injections effectively inhibited growth of human pancreatic cancer cells in vivo. These findings support the potential efficacy of combining a cancer-specific promoter, such as the PEG-Prom, with a novel anti-neoplastic agent, such as hPNPase(old-35), to create a potent, targeted cancer therapeutic, especially for a devastating disease like pancreatic cancer.  相似文献   

11.
Cellular senescence is the ultimate and irreversible loss of replicative capacity occurring in primary somatic cell culture. It is triggered as a stereotypic response to unrepaired nuclear DNA damage or to uncapped telomeres. In addition to a direct role of nuclear DNA double-strand breaks as inducer of a DNA damage response, two more subtle types of DNA damage induced by physiological levels of reactive oxygen species (ROS) can have a significant impact on cellular senescence: Firstly, it has been established that telomere shortening, which is the major contributor to telomere uncapping, is stress dependent and largely caused by a telomere-specific DNA single-strand break repair inefficiency. Secondly, mitochondrial DNA (mtDNA) damage is closely interrelated with mitochondrial ROS production, and this might also play a causal role for cellular senescence. Improvement of mitochondrial function results in less telomeric damage and slower telomere shortening, while telomere-dependent growth arrest is associated with increased mitochondrial dysfunction. Moreover, telomerase, the enzyme complex that is known to re-elongate shortened telomeres, also appears to have functions independent of telomeres that protect against oxidative stress. Together, these data suggest a self-amplifying cycle between mitochondrial and telomeric DNA damage during cellular senescence.  相似文献   

12.
13.
14.
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD^+)作为糖酵解、三羧酸循环和氧化磷酸化中关键酶的辅助因子,参与了细胞的物质代谢、能量合成、损伤DNA的修复等多种生理病理过程。近年来越来越多的研究发现,细胞内NAD^+水平在机体或细胞衰老过程中呈明显下降趋势,而补充NAD^+能延缓细胞/机体的衰老,使NAD^+及其前体物质在细胞衰老中的作用受到广泛关注。该文就NAD^+及其前体物质与细胞代谢、衰老的关系及相关分子机制研究的最新进展进行综述,以期深入认识NAD^+与细胞衰老的内在联系,为细胞衰老相关的基础及应用研究提供理论参考。  相似文献   

15.
Cellular senescence, an irreversible cell-cycle arrest, reflects a safeguard program that limits the proliferative capacity of the cell exposed to endogenous or exogenous stress signals. A number of recent studies have clarified that an acutely inducible form of cellular senescence may act in response to oncogenic activation as a natural barrier to interrupt tumorigenesis at a premalignant level. Paralleling the increasing insights into premature senescence as a tumor suppressor mechanism, a growing line of evidence identifies cellular senescence as a critical effector program in response to DNA damaging chemotherapeutic agents. This review discusses molecular pathways to stress-induced senescence, the interference of a terminal arrest condition with clinical outcome, and the critical overlap between premature senescence and apoptosis as both tumor suppressive and drug-responsive cellular programs.  相似文献   

16.
Cu,Zn-superoxide dismutase (SOD1) is an abundant, largely cytosolic enzyme that scavenges superoxide anions. The biological role of SOD1 is somewhat controversial because superoxide is thought to arise largely from the mitochondria where a second SOD (manganese SOD) already resides. Using bakers' yeast as a model, we demonstrate that Cu,Zn-SOD1 helps protect mitochondria from oxidative damage, as sod1Delta mutants show elevated protein carbonyls in this organelle. In accordance with this connection to mitochondria, a fraction of active SOD1 localizes within the intermembrane space (IMS) of mitochondria together with its copper chaperone, CCS. Neither CCS nor SOD1 contains typical N-terminal presequences for mitochondrial uptake; however, the mitochondrial accumulation of SOD1 is strongly influenced by CCS. When CCS synthesis is repressed, mitochondrial SOD1 is of low abundance, and conversely IMS SOD1 is very high when CCS is largely mitochondrial. The mitochondrial form of SOD1 is indeed protective against oxidative damage because yeast cells enriched for IMS SOD1 exhibit prolonged survival in the stationary phase, an established marker of mitochondrial oxidative stress. Cu,Zn-SOD1 in the mitochondria appears important for reactive oxygen physiology and may have critical implications for SOD1 mutations linked to the fatal neurodegenerative disorder, amyotrophic lateral sclerosis.  相似文献   

17.
Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.  相似文献   

18.
Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age‐related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号