首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.  相似文献   

2.
Summary N-CAM180, the molecular form of the three neural cell adhesion molecules (N-CAM) with the largest cytoplasmic domain, is accumulated at sites of cell-cell contact (cell bodies, neurites, growth cones) in cultures of neuroblastoma and cerebellum. At these sites the cytoskeletonmembrane linker protein brain spectrin and actin are also accumulated. Brain spectrin copurifies with N-CAM180 by immunoaffinity chromatography and binds specifically to N-CAM180 but not to N-CAM140 or N-CAM120 in a solid-phase binding test. These observations indicate an association of N-CAM180 with the cytoskeleton in vivo. This association may underlie the reduced lateral mobility of N-CAM180 in the surface membrane compared to N-CAM140 (Pollerberg et al. 1986). Together with the fact that N-CAM180 is only expressed after termination of neuron migration in vivo (Persohn and Schachner, unpublished) these results suggest a role for N-CAM180 in stabilization of cell contacts.  相似文献   

3.
Embryonic stem (ES) cells are pluripotent cells with the potential capacity to generate any type of cell. We describe here the isolation of pluripotent ES-like cells from equine blastocysts that have been frozen and thawed. Our two lines of ES-like cells (E-1 and E-2) appear to maintain a normal diploid karyotype indefinitely in culture in vitro and to express markers that are characteristic of ES cells from mice, namely, alkaline phosphatase, stage-specific embryonic antigen-1, STAT-3 and Oct 4. After culture of equine ES-like cells in vitro for more than 17 passages, some ES-like cells differentiated to neural precursor cells in the presence of basic fibroblast growth factor (bFGF), epidermal growth factor and platelet-derived growth factor. We also developed a protocol that resulted in the differentiation of ES-like cells in vitro to hematopoietic and endothelial cell lineages in response to bFGF, stem cell factor and oncostatin M. Our observations set the stage for future developments that may allow the use of equine ES-like cells for the treatment of neurological and hematopoietic disorders.  相似文献   

4.
1,3,4-Oxadiazole derivatives were found to enhance astrocyte differentiation in rat fetal neural stem cells (NSCs). Differentiation activity was assessed by immunocytochemistry and analysis of mRNA expression of astrocyte markers, GFAP and S100. Compounds 7 and 8 showed approximately a two-fold increase in astrocyte differentiation without engagement of neuronal differentiation and detectable cytotoxicity.  相似文献   

5.
To understand the molecular mechanism underlying vigorous proliferative activity of hepatic stem-like (HSL) cells, we performed two-dimensional electrophoresis to identify the proteins statistically more abundant in rapidly growing undifferentiated HSL cells than in sodium butyrate-treated differentiated HSL cells. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and Mascot search identified 6 proteins including prohibitin, vimentin, ezrin, annexin A3, acidic ribosomal phosphoprotein P0 and Grp75. Prohibitin and vimentin control the mitogen-activated protein (MAP) kinase pathway. Ezrin is phosphorylated by various protein-tyrosine kinases and modulates interactions between cytoskeletal and membrane proteins. Annexin A3 has a role in DNA synthesis. Acidic ribosomal phosphoprotein P0 and Grp75 play in protein synthesis. These results suggest that the proteins related to the MAP kinase cascade had some role in continuous proliferation of HSL cells without differentiation.  相似文献   

6.
7.
Ascorbic acid has been reported to promote the differentiation of embryonic stem (ES) cells into cardiomyocytes; however, the specific functions of ascorbic acid have not been defined. A stable form of ascorbic acid, namely, l-ascorbic acid 2-phosphate (A2-P), significantly enhanced cardiac differentiation; this was assessed by spontaneous beating of cardiomyocytes and expression of cardiac-specific markers obtained from mouse ES cells. This effect of ascorbic acid was observed only when A2-P was present during the early phase of differentiation. Treatment with two types of collagen synthesis inhibitors, l-2-azetidine carboxylic acid and cis-4-hydroxy-d-proline, significantly inhibited the A2-P-enhanced cardiac differentiation, whereas treatment with the antioxidant N-acetyl cysteine showed no effect. These findings demonstrated that ascorbic acid enhances differentiation of ES cells into cardiomyocytes through collagen synthesis and suggest its potential in the modification of cardiac differentiation of ES cells.  相似文献   

8.
9.
Side population (SP) is reported to be a stem cell-rich population. In the presence of leukemia inhibitory factor (LIF), cultured kidney SP cells differentiated into multi-lineage in collagen gel but not in synthesized polymer that has no cell adhesion factor. In cultured kidney SP cells, gene expression of kidney-specific cadherin 16 was specifically upregulated in collagen gel but not in synthesized polymer. Moreover, decreasing cadherin 16 expression using siRNA abolished LIF-induced multi-lineage differentiation of kidney SP in collagen gel. These results indicated that LIF induced multi-lineage differentiation of adult stem-like cells in kidney via cadherin 16.  相似文献   

10.
Recent studies show that type II transmembrane serine proteases play important roles in diverse cellular activities and pathological processes. Their expression and functions in the central nervous system, however, are largely unexplored. In this study, we show that the expression of one such member, matriptase (MTP), was cell type-restricted and primarily expressed in neural progenitor (NP) cells and neurons. Blocking MTP expression or MTP activity prevented NP cell traverse of reconstituted basement membrane, whereas overexpression of MTP promoted it. The NP cell mobilization induced by either vascular endothelial growth factor or hepatocyte growth factor was also impaired by knocking down MTP expression. MTP acts upstream of matrix metalloproteinase 2 in promoting NP cell mobility. In embryonic stem cell differentiation to neural cells, MTP knockdown had no effect on entry of embryonic stem cells into the neural lineage. High MTP expression or activity, however, shifts the population dynamics from NP cells toward neurons to favor neuronal differentiation. This is the first report to demonstrate the direct involvement of type II transmembrane serine protease in NP cell function.  相似文献   

11.
Staurosporine (STS) has been reported as not only a pro-apoptotic agent, but also a terminal differentiation inducer in several neuroblastoma cell lines. Here, we report involvement of amyloid precursor protein (APP) in a STS induced astrocytic differentiation of human neural progenitor cells (NT-2/D1). We found that STS-treated NT-2/D1 cells expressed astrocyte-specific glial fibrillary acidic protein (GFAP), aspartate transporter, and glutamate transporter-1 with a distinctive astrocytic morphology. STS treatment increased GFAP promoter activity and increased expression and secretion of APP in NT-2/D1 cell culture. Overexpressed APP enhanced GFAP promoter activity and expression of GFAP, while gene silencing of APP by RNA interference decreased GFAP expression. These results indicate involvement of APP in STS induced astrocytic differentiation of NT-2/D1 cells. Furthermore, suppression of ERK1/2 phosphorylation, which is known to regulate APP expression by a MEK1 inhibitor, PD098059, reduced both APP and GFAP expression in STS treated NT-2/D1 cells. Thus, STS may induce astrocytic differentiation of NT-2/D1 by increasing APP levels associate with activation of ERK pathway.  相似文献   

12.
Binding of N-formyl-methionyl-leucyl-phenylalanine (fMLP) to its specific cell surface receptor, N-formyl peptide receptor (FPR), triggers different cascades of biochemical events, eventually leading to cellular activation. However, the physiological role of fMLP and FPR during differentiation of mesenchymal stem cells is unknown. In this study, we attempted to determine whether fMLP regulates differentiation of mesenchymal stem cells derived from bone marrow. Analysis by quantitative-PCR and flow cytometry showed significantly increased expression of FPR1, but not FPR2 and FPR3, during osteoblastic differentiation. fMLP, a specific ligand of FPR1, promotes osteoblastic commitment and suppresses adipogenic commitment under differentiation conditions. Remarkably, fMLP-stimulated osteogenesis is associated with increased expression of osteogenic markers and mineralization, which were blocked by cyclosporine H, a selective FPR1 antagonist. In addition, fMLP inhibited expression of peroxisome proliferator-activated receptor-γ1, a major regulator of adipocytic differentiation. fMLP-stimulated osteogenic differentiation was mediated via FPR1-phospholipase C/phospholipase D-Ca(2+)-calmodulin-dependent kinase II-ERK-CREB signaling pathways. Finally, fMLP promoted bone formation in zebrafish and rabbits, suggesting its physiological relevance in vivo. Collectively, our findings provide novel insight into the functional role of fMLP in bone biology, with important implications for its potential use as a therapeutic agent for treatment of bone-related disorders.  相似文献   

13.
14.
目的探讨复方861对大鼠肝脏卵圆细胞分化的影响,了解其在肝纤维化治疗过程中促进肝细胞再生的可能机制。方法不同浓度(1.95,3.90,7.81,15.62,31.25,62.50,125,250,500,1000μg/mL)的复方861在无血清培养条件下作用于WB-F344细胞24 h,MTT法分析法检测细胞生长情况。500μg/mL复方861在无血清条件下作用WB-F344细胞72 h后,通过RT-PCR观察CK-19、AFP、ALB、αmRNA表达的变化。以同期未作处理的WB-F344作为空白对照组。结果 WB-F344细胞经过不同复方861作用后,除1000μg/mL外,各组细胞生长均未受到抑制,500μg/mL时细胞生存活性最佳。无血清条件下作用72 h后,半定量RT-PCR发现861组AFP mRNA的表达显著增加,CK-19 mRNA的表达显著减少,同时发现861组有ALB mRNA的表达。结论复方861可能诱导WB-F344细胞主要向肝细胞方向分化。  相似文献   

15.
The balance between the symmetric and asymmetric division of stem cells governs tissue homeostasis, and the deregulation of this balance initiates tumor formation. Although many functions of Numb have been demonstrated in normal stem cells, the role of Numb in cancer stem cells is relatively unclear. We recently demonstrated that in colorectal cancer stem cells, Numb was suppressed by miR-146a-5p, which resulted in the activation of the Wnt signaling pathway and symmetric template DNA division. Here, we demonstrate that the PKH26-labeled subcellular foci are enriched for endosomal markers such as EEA1 and RAB11. In colorectal cancer stem cells, the PKH-26-labeled vesicles are segregated equally at the first mitotic division; in contrast, they are unequally segregated in parental cells or in cancer stem cells undergoing serum-induced differentiation. The PKHBright progeny of colorectal cancer stem cells harbors a stem cell phenotype, whereas the PKHDim progeny behaves as the differentiating cells. The miR-146a-5p-regulated Numb controls the distribution of PKH26 vesicles. Our results suggest a critical role of Numb in controlling the segregation of subcellular vesicles during division of colorectal cancer stem cells.  相似文献   

16.
目的研究骨髓间充质干细胞分化为心肌细胞过程中Notch表达的研究。方法用密度梯度离心法分离培养犬骨髓间充质干细胞,按照酶法及差速贴壁法分离培养心肌细胞。观察干细胞增殖及传代情况。单独培养的干细胞为对照组,实验组将骨髓间充质干细胞与心肌细胞共培养,用RT-PCR、免疫细胞化学、MTT等方法检测干细胞分化为心肌细胞的情况,及干细胞在增殖与分化为心肌细胞过程中Notch信号系统的表达情况。结果骨髓间充质干细胞呈梭形、旋涡样生长,增殖及传代能力强,并可诱导分化为心肌样细胞,免疫荧光示心肌细胞标志物的表达。RT-PCR及免疫细胞化学显示实验组有Notch信号通路受体及配体的表达,而对照组表达微弱。结论骨髓间充质干细胞在增殖及分化过程中存在Notch信号通路,在干细胞分化为心肌细胞过程中Notch信号系统的表达上调。  相似文献   

17.
Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitorcell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration.  相似文献   

18.
Located near the oropharynx, the tonsils are the primary mucosal immune organ. Tonsil tissue is a promising alternative source for the high-yield isolation of adult stem cells, and recent studies have reported the identification and isolation of tonsil-derived stem cells (T-SCs) from waste surgical tissue following tonsillectomies in relatively young donors (i.e., under 10 years old). As such, T-SCs offer several advantages, including superior proliferation and a shorter doubling time compared to bone marrow-derived mesenchymal stem cells (MSCs). T-SCs also exhibit multi-lineage differentiation, including mesodermal, endodermal (e.g., hepatocytes and parathyroid-like cells), and even ectodermal cells (e.g., Schwann cells). To this end, numbers of researchers have evaluated the practical use of T-SCs as an alternative source of autologous or allogenic MSCs. In this review, we summarize the details of T-SC isolation and identification and provide an overview of their application in cell therapy and regenerative medicine.  相似文献   

19.
Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.  相似文献   

20.
The purpose of this study was to investigate how human umbilical cord mesenchymal stem cells (HUMSCs) affect breast cancer tumourigenesis. To observe the influence of HUMSCs on tumourigenesis in vitro, we performed a co-culture of MDA MB-231 breast cancer cells with HUMSCs, and a result of HUMSCs on tumourigenesis in vivo was achieved by injection of HUMSCs into nonobese diabetic/severe combined immunodeficient mice following tumour establishment with MDA-MB231. During the co-culture, apoptosis of MDA-MB231 was noted, which was driven either by binding with HUMSC through direct cell-cell contact or by formation of a novel cell-in-cell phenomenon after internalization of HUMSC. Also, treatment with HUMSC injection was efficacious in both in situ and metastatic breast cancers in the animal models. Since HUMSCs were proved to efficaciously suppress breast cancer tumourigenesis both in vitro and in vivo, it is our expectation that treatment with HUMSCs can be a viable therapy for breast cancer in the near future. In addition, we share a new point of view on the role of HUMSCs in foetal development during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号