首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although methanogenic archaea use B(12) extensively as a methyl carrier for methanogenesis, little is known about B(12) metabolism in these prokaryotes or any other archaea. To improve our understanding of how B(12) metabolism differs between bacteria and archaea, the gene encoding the ATP:co(I)rrinoid adenosyltransferase in Methanosarcina mazei strain G?1 (open reading frame MM3138, referred to as cobA(Mm) here) was cloned and used to restore coenzyme B(12) synthesis in a Salmonella enterica strain lacking the housekeeping CobA enzyme. cobA(Mm) protein was purified and its initial biochemical analysis performed. In vitro, the activity is enhanced 2.5-fold by the addition of Ca(2+) ions, but the activity was not enhanced by Mg(2+) and, unlike the S. enterica CobA enzyme, it was >50% inhibited by Mn(2+). The CobA(Mm) enzyme had a K(m)(ATP) of 3 microM and a K(m)(HOCbl) of 1 microM. Unlike the S. enterica enzyme, CobA(Mm) used cobalamin (Cbl) as a substrate better than cobinamide (Cbi; a Cbl precursor); the beta phosphate of ATP was required for binding to the enzyme. A striking difference between CobA(Se) and CobA(Mm) was the use of ADP as a substrate by CobA(Mm), suggesting an important role for the gamma phosphate of ATP in binding. The results from (31)P-nuclear magnetic resonance spectroscopy experiments showed that triphosphate (PPP(i)) is the reaction by-product; no cleavage of PPP(i) was observed, and the enzyme was only slightly inhibited by pyrophosphate (PP(i)). The data suggested substantial variations in ATP binding and probably corrinoid binding between CobA(Se) and CobA(Mm) enzymes.  相似文献   

2.
The activity of the housekeeping ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica sv. Typhimurium is required to adenosylate de novo biosynthetic intermediates of adenosylcobalamin and to salvage incomplete and complete corrinoids from the environment of this bacterium. In vitro, reduced flavodoxin (FldA) provides an electron to generate the co(I)rrinoid substrate in the CobA active site. To understand how CobA and FldA interact, a computer model of a CobA.FldA complex was generated. This model was used to guide the introduction of mutations into CobA using site-directed mutagenesis and the synthesis of a peptide mimic of FldA. Residues Arg-9 and Arg-165 of CobA were critical for FldA-dependent adenosylation but were catalytically as competent as the wild-type protein when cob(I)alamin was provided as substrate. These results indicate that Arg-9 and Arg-165 are important for CobA.FldA docking but not to catalysis. A truncation of the 9-amino acid N-terminal helix of CobA reduced its FldA-dependent cobalamin adenosyltransferase activity by 97.4%. The same protein, however, had a 4-fold higher specific activity than the native enzyme when cob(I)alamin was generated chemically in situ.  相似文献   

3.
The specificity of the ATP:corrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica serovar Typhimurium LT2 for its nucleotide substrate was tested using ATP analogs and alternative nucleotide donors. The enzyme showed broad specificity for the nucleotide base and required the 2'-OH group of the ribosyl moiety of ATP for activity. (31)P NMR spectroscopy was used to identify inorganic triphosphate (PPP(i)) as the byproduct of the reaction catalyzed by the CobA enzyme. Cleavage of triphosphate into pyrophosphate and orthophosphate did not occur, indicating that triphosphate cleavage was not required for release of the adenosylcorrinoid product. Triphosphate was a strong inhibitor of the reaction, with 85% of CobA activity lost when the ATP/PPP(i) ratio present in the reaction mixture was 1:2.5.  相似文献   

4.
Sarcoplasmic reticulum with calcium transport activity has been isolated from the cross-striated adductor muscle of the scallop, which lives in cold (< or = 20 degrees C) sea water, by using pH 7.0 buffer solution both to homogenize the tissue and to sediment the membrane fraction. The yield of the preparation was 60-100 mg protein from 100 g of the scallop muscle. Ca(2+)-activated ATPase protein of about 100 kDa accounted for 40-50% of the protein preparation. The maximum activities of ATP-dependent, oxalate-facilitated calcium accumulation and Ca(2+)-ATPase were observed at a pH of about 7.0 and temperature of 20-30 degrees C, and their values were about 2 mumol Ca2+/mg of protein/min and about 3 mumol ATP hydrolysis/mg of protein/min, respectively. At 0 degree C, 10-20% of these activities was maintained, while at 37 degrees C, the activities were irreversibly lost. The Ca(2+)-ATPase activity was half-maximally activated at about 0.3 microM [Ca2+]. The ATPase activity exhibited non-Michaelian behavior with respect to ATP, with two different Km values of approximately 10 microM and 0.1-0.3 mM. GTP, CTP, and ITP were also hydrolyzed by the preparation at a rate of 10-30% of that of ATP. The preparation was stored at -80 degrees C with retention of function for about a year.  相似文献   

5.
We report the cloning, sequencing, and expression of malK encoding the ATP-hydrolyzing subunit of the maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis. According to the deduced amino acid sequence, MalK consists of 372 amino acids with a calculated molecular weight of 41,787. It shows 47% identity with the MalK protein of Escherichia coli and high sequence conservation in important regions. C-terminal His-tagged MalK was purified. The soluble protein appeared monomeric by molecular sieve chromatography and showed ATPase activity. Enzymatic activity was highest at 80 degrees C with a Km of 150 microM and a Vmax of 0.55 micromol of ATP hydrolyzed/min/mg of protein. ADP was not a substrate but a competitive inhibitor (Ki 230 microM). GTP and CTP were also hydrolyzed. ATPase activity was inhibited by N-ethylmaleimide but not by vanadate. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the ABC transporters in these two phylogenetic branches.  相似文献   

6.
Uridine kinase from Ehrlich ascites tumor cells has been purified about 60,000-fold to apparent homogeneity and with an overall recovery of about 40%. This purification was achieved using phosphocellulose and adenosine 5'-triphosphate-agarose affinity chromatography. The subunit molecular mass as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 31,000 daltons. With two-dimensional electrophoresis, only one spot was observed, indicating the absence of isoenzymes. Multiple peaks of activity are routinely observed on ion exchange chromatography or gel filtration, for both crude preparations or homogeneous uridine kinase, in agreement with our earlier results that this enzyme exists as multiple interconvertible oligomeric forms (Payne, R. C., and Traut, T. W. (1982) J. Biol. Chem. 257, 12485-12488). The purified enzyme has a specific activity of 283 mumol/min/mg of protein at 22 degrees C. Initial velocity studies using uridine and ATP are consistent with a sequential mechanism. Km values for uridine, cytidine, and ATP are 40, 57, and 450 microM, respectively. CTP and UTP are competitive inhibitors with respect to ATP, with Ki values for CTP and UTP of 10 and 61 microM, respectively. The enzyme was active with several nucleoside analogs, the Km values being 69 microM (5-fluorouridine), 200 microM (3-deazauridine), and 340 microM (6-azauridine). The pure enzyme is very sensitive to freezing, but can be maintained at O degrees C for 8 weeks with only 20% loss of activity. For long-term storage, enzyme in 50% glycerol can be maintained at -20 degrees C for many months with no detectable loss of activity.  相似文献   

7.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

8.
Adenylylcyclase activity in the flagella of gametes of Chlamydomonas reinhardtii was inhibited by prior incubation at or below 30 degrees C in the presence of ATP. This decrease did not occur in the absence of ATP, in the presence of the ATP analog 5'-adenylylimidodiphosphate (App(NH)p), or in the presence of ATP plus the protein kinase inhibitor staurosporine (2 microM). If ATP treatment was performed in the absence of an ATP-regenerating system, activity initially declined and subsequently recovered. Incubation of flagella at 45 degrees C in the absence of ATP or incubation at lower temperatures in the presence of either App(NH)p or staurosporine both increased adenylylcyclase activity (over 10-fold) and blocked subsequent ATP-dependent loss of activity at 30 degrees C. This heat-induced activation was prevented by the presence of ATP plus an ATP-regenerating system. Incubation of flagella with [gamma-32P]ATP followed by gel electrophoresis in sodium dodecyl sulfate indicated the presence of endogenous protein kinase and protein phosphatase activities. These data suggest that the flagellar adenylylcyclase in Chlamydomonas gametes is inhibited by phosphorylation and stimulated by dephosphorylation. This mechanism for regulating adenylylcyclase may underlie the rapid increase in cyclic AMP that is induced by flagellar adhesion during fertilization in Chlamydomonas.  相似文献   

9.
Direct effects of altered temperature on renal structure and function   总被引:2,自引:0,他引:2  
Although marked alterations in temperature often accompany ischemic, acute renal failure (ARF), the effects of altered temperature on renal structure and function have received little attention. In the present investigation, isolated rat kidneys perfused at 41 degrees C had extensive tubular damage and decreased function compared to kidneys perfused at 37 degrees C. In contrast, kidneys perfused at 30 degrees C had less tubular damage, and better function, than kidneys perfused at 37 degrees C. Increased temperature caused a 50% reduction in renal ATP (0.46 +/- 0.04 microM/100 mg tissue protein. 37 degrees C vs. 0.26 +/- 0.03 microM/100 mg tissue protein, 41 degrees C; p less than 0.05). The decreased ATP occurred despite reduced sodium reabsorption (129 +/- 8 microM/min/g, 37 degrees C vs. 65 +/- 12 microM/min/g, 41 degrees C, p less than 0.05) and normal renal oxygen consumption (QO2). These results suggest that increased temperature may cause an uncoupling of QO2 and sodium chloride transport, and an increase in nontransport mediated, basal metabolic rate may result in depleted cellular ATP levels and renal tubular cell death.  相似文献   

10.
K L Menge  F R Bryant 《Biochemistry》1988,27(7):2635-2640
The cooperativity of the single-stranded DNA dependent nucleoside triphosphatase activity of the recA protein was investigated by examining the influence of a good substrate (ATP) on the hydrolysis of a poor substrate (GTP). At pH 7.5 and 37 degrees C, both ATP and GTP are hydrolyzed with a turnover number of 17.5 min-1. The S0.5 for GTP (750 microM), however, is nearly 20-fold higher than the S0.5 for ATP (45 microM). Low concentrations of ATP activate the GTPase activity of the recA protein by lowering the S0.5 for GTP; in the presence of 50 microM ATP, the S0.5 for GTP is reduced from 750 microM to 200 microM. Concentrations of ATP greater than 50 microM result in competitive inhibition of the ATP-activated GTPase activity. Although GTP is a substrate for hydrolysis, it will not substitute for ATP as a high-energy cofactor in the standard recA protein promoted three-strand exchange reaction. To account for these results, a minimal kinetic model is presented in which ATP binding induces specific conformational changes in the recA protein that do not occur with GTP binding.  相似文献   

11.
We describe an assay to measure the extent of enzymatic unwinding of DNA by a DNA helicase. This assay takes advantage of the quenching of the intrinsic protein fluorescence of Escherichia coli SSB protein upon binding to ssDNA and is used to characterize the DNA unwinding activity of recBCD enzyme. Unwinding in this assay is dependent on the presence of recBCD enzyme and linear dsDNA, is consistent with the known properties of recBCD enzyme, and closely parallels other methods for measuring recBCD enzyme helicase activity. The effects of varying temperature, substrate concentrations, enzyme concentration, and mono- and divalent salt concentrations on the helicase activity of recBCD enzyme were characterized. The apparent Km values for recBCD enzyme helicase activity on linear M13 dsDNA molecules at 25 degrees C are 0.6 nM dsDNA molecules and 130 microM ATP, respectively. The apparent turnover number for unwinding is approximately 15 microM base pairs s-1 (microM recBCD enzyme)-1. When this rate is corrected for the observed stoichiometry of recBCD enzyme binding to dsDNA, kcat for helicase activity corresponds to an unwinding rate of approximately 250 base pairs of DNA s-1 (functional recBCD complex)-1 at 25 degrees C. At 37 degrees C, the apparent Km value for dsDNA molecules was the same as that at 25 degrees C, but the apparent turnover number became 56 microM base pairs s-1 (microM recBCD enzyme)-1 [or 930 base pairs s-1 (functional recBCD complex)-1 when corrected for observed stoichiometry]. With increasing NaCl concentration, kcat peaks at 100 mM, and the apparent Km value for dsDNA increases by 3-fold at 200 mM NaCl. In the presence of 5 mM calcium acetate, the apparent Km value is increased by 3-fold, and kcat decreased by 20-30%. We have also shown that recBCD enzyme molecules are able to catalytically unwind additional dsDNA substrates subsequent to initiation, unwinding, and dissociation from a previous dsDNA molecule.  相似文献   

12.
Retinoylation (retinoic acid acylation), a posttranslational modification of proteins occurring in a variety of eukariotic cell lines both in vivo and in vitro, was studied in rat testes mitochondria. all-trans-Retinoic acid, a highly active form of vitamin A in inducing cellular differentiation, is incorporated covalently into proteins of rat testes mitochondria. The maximum retinoylation activity of rat testes mitochondrial proteins was 21.6 pmoles mg protein(-1) 90 min(-1) at 37 degrees C. The activation energy was 44 kJ mol(-1) from 5 to 37 degrees C. The retinoylation activity had a pH optimum of 7.5. The retinoylation process was specific for the presence of ATP, ADP, and GTP (even if only 30% of the control). The half saturation constant (Km) was 0.69 microM for all-trans-retinoic acid, while the inhibition constant (Ki) was 1.5 microM for 13-cis-retinoic acid. Retinoylation was not inhibited by high concentrations of myristic acid (MA) and palmitic acid (PA), indicating that retinoylation and acylation reactions involved different rat testes mitochondrial proteins. The ATP or CoASH saturation curves of retinoylation reaction showed sigmoidal behavior with apparent half saturation constants (K0.5) of 6.5 mM ATP and 40.6 microM CoASH. On SDS-gel electrophoresis, the hydroxylapaptite/celite eluate showed various protein bands between 25 and 80 kDa. This retinoylated protein was purified 17-fold with respect to the mitochondrial extract.  相似文献   

13.
The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a k(cat) of 16 s(-1) and a K(m) of 175 microM at a pH optimum of 8.0 when assayed at 25 degrees C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum k(cat) of 100 s(-1), with a K(m) of 93 microM at 65 degrees C. Activity was stable at 65 degrees C for >24 h and at 90 degrees C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer.  相似文献   

14.
The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s at 65 degrees C, respectively, for the B. subtilis enzyme. Chemical cross-linking shows that both enzymes are hexamers. Vmax is determined as 440 micromol.min(-1).mg protein(-1) and Km values for ATP and ribose 5-phosphate are determined as 310 and 530 microM, respectively, for the B. caldolyticus enzyme. The enzyme requires 50 mM Pi as well as free Mg2+ for maximal activity. Manganese ion substitutes for Mg2+, but only at 30% of the activity obtained with Mg2+. ADP and GDP inhibit the B. caldolyticus enzyme in a cooperative fashion with Hill coefficients of 2.9 for ADP and 2.6 for GDP. Ki values are determined as 113 and 490 microm for ADP and GDP, respectively. At low concentrations ADP inhibition is linearly competitive with respect to ATP. A predicted structure of the B. caldolyticus enzyme based on homology modelling with the structure of B. subtilis 5-phospho-alpha-D-ribosyl 1-diphosphate synthase shows 92% of the amino acid differences to be on solvent exposed surfaces in the hexameric structure.  相似文献   

15.
ATP:cob(I)alamin adenosyltransferase (EutT) of Salmonella enterica was overproduced and enriched to approximately 70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble active EutT protein (approximately 70% homogeneous) was obtained after treatment with detergent. Under conditions in which cobalamin (Cbl) was saturating, Km(ATP) = 10 microm, kcat = 0.03 s(-1), and Vmax = 54.5 nm min(-1). Similarly, under conditions in which MgATP was saturating, Km(Cbl) = 4.1 microm, kcat = 0.06 s(-1), and Vmax = 105 nm min(-1). Unlike other ATP:co(I)rrinoid adenosyltransferases in the cell (i.e. CobA and PduO), EutT activity was > or =50-fold higher with ATP versus GTP, and EutT retained 80% of its activity with ADP substituted for ATP and was completely inactive with AMP as substrate, indicating that the enzyme requires the beta-phosphate group of the nucleotide substrate. The data suggest that the amino group of adenine might play a role in nucleotide recognition and/or binding. Unlike the housekeeping CobA enzyme, EutT was not inhibited by inorganic tripolyphosphate (PPPi). Results from 31P NMR spectroscopy studies identified PPi and Pi as by-products of the EutT reaction. In the absence of Cbl, EutT cleaved ATP into adenosine and PPPi, suggesting that PPPi is broken down into PPi and Pi. Electron transfer protein partners for EutT were not encoded by the eut operon. EutT-dependent activity was detected in cell-free extracts of cobA strains enriched for EutT when FMN and NADH were used to reduce cob(III)alamin to cob(I)alamin.  相似文献   

16.
We find that the rate of dsDNA-dependent ATPase activity is biphasic, with a fast component which represents the unwinding of the dsDNA and a slow component which results from the ssDNA-dependent ATPase activity of recBCD enzyme. Comparison of the ATPase and helicase activities permits evaluation of the efficiency of ATP hydrolysis during unwinding. This efficiency can be calculated from the maximum rates of ATPase and helicase activities and is found to range between 2.0 and 3.0 ATP molecules hydrolyzed per base pair of DNA unwound. The number of ATP molecules hydrolyzed per base pair unwound is not altered by temperature but does increase at low concentrations of DNA and high concentrations of sodium chloride and magnesium acetate. The apparent Km values for the DNA and ATP substrates of recBCD enzyme dsDNA-dependent ATPase activity at 25 degrees C were determined to be 0.13 nM DNA molecules and 85 microM ATP, respectively. The observed kcat value is approximately 45 microM ATP s-1 (microM recBCD enzyme)-1. If this rate is corrected for the measured stoichiometry of recBCD enzyme binding to dsDNA, the kcat for ATPase activity corresponds to an ATP hydrolysis rate of approximately 740 ATP molecules s-1 (functional recBCD complex)-1 at 25 degrees C.  相似文献   

17.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway.  相似文献   

18.
The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.  相似文献   

19.
20.
The effect of diethylstilbestrol, a synthetic estrogen, on mast cell secretion was investigated. The results showed that 50 microM diethylstilbestrol inhibited histamine release from rat peritoneal mast cells in the presence and absence of glucose, but did not affect 45Ca uptake stimulated by concanavalin A. Diethylstilbestrol also inhibited histamine release induced by compound 48/80, exogenous ATP, or ionophore A23187. Since estradiol benzoate, hexestrol and daidzein were not inhibitory, the inhibitory action of diethylstilbestrol must be independent of its estrogenic activity. The ATP content of mast cells decreased to less than 0.1 nmol/10(6) cells on treatment with 50 microM diethylstilbestrol at 37 degrees C for 15 min. This effect of diethylstilbestrol in decreasing the ATP content of mast cells correlated well with its inhibitory effect on histamine release. Diethylstilbestrol at 50 microM depleted the cells of ATP at 37 degrees C, but not at 0 degrees C, whereas [3H]diethylstilbestrol ( [monoethyl-3H]diethylstilbestrol) binding to rat mast cells was the same at 0 and 37 degrees C. It is concluded that diethylstilbestrol reduced the ATP content of rat mast cells by inhibiting metabolism of the cells, and consequently inhibited degranulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号