首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide sequences were determined for the complete M genome segments of two distinct hantavirus genetic lineages which were detected in hantavirus antibody- and PCR-positive white-footed mice (Peromyscus leucopus) from Indiana and Oklahoma. Phylogenetic analyses indicated that although divergent from each other, the virus lineages in Indiana and Oklahoma were monophyletic and formed a newly identified unique ancestral branch within the clade of Sin Nombre-like viruses found in Peromyscus mice. Interestingly, P. leucopus-borne New York virus was found to be most closely related to the P. maniculatus-borne viruses, Sin Nombre and Monongahela, and monophyletic with Monongahela virus. In parallel, intraspecific phylogenetic relationships of P. leucopus were also determined, based on the amplification, sequencing, and analysis of the DNA fragment representing the replication control region of the rodent mitochondrial genome. P. leucopus mitochondrial DNA haplotypes were found to form four separate genetic clades, referred to here as Eastern, Central, Northwestern, and Southwestern groups. The distinct Indiana and Oklahoma virus lineages were detected in P. leucopus of the Eastern and Southwestern mitochondrial DNA haplotypes, respectively. Taken together, our current data suggests that both cospeciation of Peromyscus-borne hantaviruses with their specific rodent hosts and biogeographic factors (such as allopatric migrations, geographic separation, and isolation) have played important roles in establishment of the current genetic diversity and geographic distribution of Sin Nombre-like hantaviruses. In particular, the unusual position of New York virus on the virus phylogenetic tree is most consistent with an historically recent host-switching event.  相似文献   

2.
3.
A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into "panhandle" hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5' and 3' ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.  相似文献   

4.
Sin Nombre virus (SNV) is an etiologic agent of hantavirus pulmonary syndrome. To better understand the natural history of this virus we studied population dynamics and temporal pattern of infection of its rodent hosts in southeastern Colorado (USA) from 1995 to 2000. We present evidence for the presence of two hantaviruses, SNV in deer mice (Peromyscus maniculatus) and El Moro Canyon virus in western harvest mice (Reithrodontomys megalotis), at our study sites. Sin Nombre virus appeared only sporadically in deer mouse populations; overall prevalence of antibody to SNV was 2.6%. El Moro Canyon virus was enzootic: seroconversions occurred throughout the year; antibody prevalence (11.9% overall) showed a delayed-density-dependent pattern, peaking as relative abundance of mice was declining. Males of both host species were more frequently infected than were females. An apparently lower mean survivorship (persistence at the trapping site) for SNV antibody-positive deer mice could indicate a detrimental effect of SNV on its host, but might also be explained by the fact that antibody-positive mice were older when first captured.  相似文献   

5.
Antibodies to hantaviruses in two species of sigmodontine rodents (Peromyscus maniculatus and Reithrodontomys sumichrasti) collected in central Mexico are reported. Peromyscus maniculatus, a common species throughout much of Mexico, is the reservoir of Sin Nombre virus (SNV), the etiologic agent of the great majority of cases of hantavirus pulmonary syndrome (HPS) in North America. Although the identity of the virus detected in P. maniculatus in Mexico could not be determined by these serologic results, our findings suggest that SNV may occur throughout the range of P. maniculatus in North America. If true, the failure to identify HPS in Mexico is not due to the absence of pathogenic hantaviruses in Mexico.  相似文献   

6.
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for development of early-warning systems for disease risk. Relationships among weather variables, satellite-derived vegetation productivity, and deer mouse populations were examined for a grassland site east of the Continental Divide and a sage-steppe site west of the Continental Divide in Montana, USA. We acquired monthly deer mouse population data for mid-1994 through 2007 from long-term study sites maintained for monitoring changes in hantavirus reservoir populations, and we compared these with monthly bioclimatology data from the same period and gross primary productivity data from the Moderate Resolution Imaging Spectroradiometer sensor for 2000-06. We used the Random Forests statistical learning technique to fit a series of predictive models based on temperature, precipitation, and vegetation productivity variables. Although we attempted several iterations of models, including incorporating lag effects and classifying rodent density by seasonal thresholds, our results showed no ability to predict rodent populations using vegetation productivity or weather data. We concluded that trophic cascade connections to rodent population levels may be weaker than originally supposed, may be specific to only certain climatic regions, or may not be detectable using remotely sensed vegetation productivity measures, although weather patterns and vegetation dynamics were positively correlated.  相似文献   

7.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   

8.
The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus, Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus, is the only indigenous isolate from India, isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.  相似文献   

9.
Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents ( Urophora spp.), widely established in North America for spotted knapweed ( Centaurea maculosa ) control, to indirectly elevate Sin Nombre hantavirus by providing food subsidies to populations of deer mice ( Peromyscus maniculatus ), the primary reservoir for the virus. We show that seropositive deer mice (mice testing positive for hantavirus) were over three times more abundant in the presence of the biocontrol food subsidy. Elevating densities of seropositive mice may increase risk of hantavirus infection in humans and significantly alter hantavirus ecology. Host specificity alone does not ensure safe biological control. To minimize indirect risks to non-target species, biological control agents must suppress pest populations enough to reduce their own numbers.  相似文献   

10.
The relative roles of top-down and bottom-up forces in affecting disease prevalence in wild hosts is important for understanding disease dynamics and human disease risk. We found that the prevalence of Sin Nombre virus (SNV), the agent of a severe disease in humans (hantavirus pulmonary syndrome), in island deer mice from the eight California Channel Islands was greater with increased precipitation (a measure of productivity), greater island area, and fewer species of rodent predators. In finding a strong signal of the ecological forces affecting SNV prevalence, our work highlights the need for future work to understand the relative importance of average rodent density, population fluctuations, behavior, and specialist predators as they affect SNV prevalence. In addition to illustrating the importance of both bottom-up and top-down limitation of disease prevalence, our results suggest that predator richness may have important bearing on the risk of exposure to animal-borne diseases that affect humans.  相似文献   

11.
New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV) of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus), infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus), the reservoir host of Sin Nombre virus (SNV), found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi). All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4+ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.  相似文献   

12.
Sin Nombre virus is a member of the Hantavirus genus, family Bunyaviridae, and is an etiologic agent of hantavirus pulmonary syndrome. The hantavirus nucleocapsid (N) protein plays an important role in the encapsidation and assembly of the viral negative-sense genomic RNA. The Sin Nombre N protein was expressed as a C-terminal hexahistidine fusion in Escherichia coli and initially purified by nickel-affinity chromatography. We developed methods to extract the soluble fraction and to solubilize the remainder of the N protein using denaturants. Maximal expression of protein from native purification was observed after a 1.5-h induction with IPTG (2.4 mg/L). The zwitterionic detergent Chaps did not enhance the yield of native purifications, but increased the yield of protein obtained from insoluble purifications. Both soluble and insoluble materials, purified by nickel-affinity chromatography, were also subjected to Hi Trap SP Sepharose fast-flow (FF) chromatography. Both soluble and insoluble proteins had a similar A(280) profile on the Sepharose FF column, and both suggested the presence of a nucleic acid contaminant. The apparent dissociation constant of the N protein, purified by nickel-affinity and SP Sepharose FF chromatography, and the 5' end of the viral S-segment genome were measured using a filter binding assay. The N protein-vRNA complex had an apparent dissociation constant of 140 nM.  相似文献   

13.
How pathogens affect their hosts is a key question in infectious disease ecology, and it can have important influences on the spread and persistence of the pathogen. Sin Nombre virus (SNV) is the etiological agent of hantavirus pulmonary syndrome (HPS) in humans. A better understanding of SNV in its reservoir host, the deer mouse, could lead to improved predictions of the circulation and persistence of the virus in the mouse reservoir, and could help identify the factors that lead to increased human risk of HPS. Using mark-recapture statistical modeling on longitudinal data collected over 15 years, we found a 13.4% decrease in the survival of male deer mice with antibodies to SNV compared to uninfected mice (both male and female). There was also an additive effect of breeding condition, with a 21.3% decrease in survival for infected mice in breeding condition compared to uninfected, non-breeding mice. The data identified that transmission was consistent with density-dependent transmission, implying that there may be a critical host density below which SNV cannot persist. The notion of a critical host density coupled with the previously overlooked disease-induced mortality reported here contribute to a better understanding of why SNV often goes extinct locally and only seems to persist at the metapopulation scale, and why human spillover is episodic and hard to predict.  相似文献   

14.
Black Creek Canal (BCC) virus is a newly identified hantavirus from Florida which is carried by the cotton rat (Sigmodon hispidus) and is associated with hantavirus pulmonary syndrome (HPS). We have investigated the interaction of BCC virus with polarized epithelial cells to examine whether entry and release of this virus occur at specific plasma membrane domains. The polarized Vero C1008 monkey kidney cell line was grown on permeable filters and infected with BCC virus either through the apical or basolateral surface. As shown by indirect immunofluorescence and radioimmunoprecipitation analysis, cells infected through the apical surface demonstrated a high level of susceptibility to BCC virus infection. In contrast, Vero C1008 cells infected basolaterally exhibited a barely detectable level of BCC virus-synthesized proteins. Titration of virus from apical and basolateral media of infected cells has demonstrated that virus titers released from the apical surface are about 1,200-fold greater than the titer of virus released into the basolateral media. The site of BCC virus release from polarized cells is, therefore, different from that previously described for release of other members of the family Bunyaviridae and may reflect one of the determinants of hantavirus pathogenesis. In addition, we have shown that BCC viral glycoproteins are expressed at the plasma membrane on the apical surface of polarized cells. Electron microscopy studies of the infected cells revealed evidence of BCC virus budding at the plasma membrane. This strongly indicates that, in contrast to most other members of the Bunyaviridae, BCC virus is assembled at the plasma membrane. Since the same site of virus assembly was recently described for Sin Nombre virus, it is likely that all of the new American hantaviruses associated with HPS utilize this same type of virus maturation.  相似文献   

15.
Between January 1995 and November 1997, longitudinal mark-recapture studies of rodent hosts of hantaviruses in a disturbed microhabitat within a shortgrass prairie ecosystem in southeastern Colorado (USA) were conducted. The site was distinguished by edaphic and floristic characteristics unique to this area and associated with historical land use patterns, as well as the year-around availability of water from a functioning windmill. Populations of two common rodent species that are hosts for hantaviruses, Peromyscus maniculatus and Reithrodontomys megalotis, had unusually rapid turnover, a younger age structure, and a much lower prevalence of antibody to Sin Nombre virus than did populations at nearby sites in more typical shortgrass prairie and canyon habitats. Based on these findings, we suggest that a stable resident population of the reservoir is critical to the maintenance of hantaviruses at a given site, and we hypothesize that long-lived, persistently infected rodents are the principal transseasonal reservoir of hantaviruses.  相似文献   

16.
Human cases of hantavirus pulmonary syndrome caused by Sin Nombre virus are the endpoint of complex ecological cascade from weather conditions, population dynamics of deer mice, to prevalence of SNV in deer mice. Using population trajectories from the literature and mathematical modeling, we analyze the time lag between deer mouse population peaks and peaks in SNV antibody prevalence in deer mice. Because the virus is not transmitted vertically, rapid population growth can lead initially to reduced prevalence, but the resulting higher population size may later increase contact rates and generate increased prevalence. Incorporating these factors, the predicted time lag ranges from 0 to 18 months, and takes on larger values when host population size varies with a longer period or higher amplitude, when mean prevalence is low and when transmission is frequency-dependent. Population size variation due to variation in birth rates rather than death rates also increases the lag. Predicting future human outbreaks of hantavirus pulmonary syndrome may require taking these effects into account.  相似文献   

17.
Hantavirus glycoprotein precursor (GPC) is posttranslationally cleaved into two glycoproteins, Gn and Gc. Cells transfected with plasmids expressing either GPC or both Gn and Gc revealed that Gn is posttranslationally degraded. Treatment of cells with the autophagy inhibitors 3-methyladenine, LY-294002, or Wortmanin rescued Gn degradation, suggesting that Gn is degraded by the host autophagy machinery. Confocal microscopic imaging showed that Gn is targeted to autophagosomes for degradation by an unknown mechanism. Examination of autophagy markers LC3-I and LC3-II demonstrated that both Gn expression and Sin Nombre hantavirus (SNV) infection induce autophagy in cells. To delineate whether induction of autophagy and clearance of Gn play a role in the virus replication cycle, we downregulated autophagy genes BCLN-1 and ATG7 using small interfering RNA (siRNA) and monitored virus replication over time. These studies revealed that inhibition of host autophagy machinery inhibits Sin Nombre virus replication in cells, suggesting that autophagic clearance of Gn is required for efficient virus replication. Our studies provide mechanistic insights into viral pathogenesis and reveal that SNV exploits the host autophagy machinery to decrease the intrinsic steady-state levels of an important viral component for efficient replication in host cells.  相似文献   

18.
In the United States, Bayou virus (BAYV) ranks second only to Sin Nombre virus (SNV) in terms of hantavirus pulmonary syndrome (HPS) incidents, having been confirmed in cases from Texas and Louisiana since its discovery in 1994. This study on BAYV infection among sympatric, non‐oryzomyine rodents (“spillover”) in Freeport, TX, is the first to link patterns of hantavirus interspecific spillover with the spatiotemporal ecology of the primary host (marsh rice rat, Oryzomys palustris). Mark‐recapture and/or harvest methods were employed from March 2002 through May 2004 in two macrohabitat types. Rodent blood samples were screened for the presence of IgG antibody to BAYV antigen by IFA after which Ab‐positive blood, saliva, and urine were analyzed for the presence of viral RNA by nested RT‐PCR. From 727 non‐oryzomyine captures, five seropositive (but not viral RNA positive) individuals were detected: one each of Baiomys taylori, Peromyscus leucopus, and Reithrodontomys fulvescens; and two Sigmodon hispidus. Spillover hosts were not associated with macrohabitat where O. palustris abundance, density, or seroprevalence was highest. Rather, spillover occurred in the macrohabitat indicative of greater overall disturbance (as indicated by grazing and exotic plant diversity) and overall biodiversity. Spillover occurred during periods of high seroprevalence detected elsewhere within the study region. Spillover locations differed significantly from all other capture locations in terms of percent water, shrub, and grass cover. Although greater habitat and mammal diversity of old‐fields may serve to reduce seroprevalence levels by tempering intraspecific contacts between rice rats, greater diversity also may create an ecologically opportunistic setting for BAYV spillover. Impacts of varying levels of disturbance and biodiversity on transmission dynamics represent a vastly uncharacterized component of the evolutionary ecology of hantaviruses.  相似文献   

19.
The nucleocapsid (N) protein functions in hantavirus replication through its interactions with the viral genomic and antigenomic RNAs. To address the biological functions of the N protein, it was critical to first define this binding interaction. The dissociation constant, K(d), for the interaction of the Hantaan virus (HTNV) N protein and its genomic S segment (vRNA) was measured under several solution conditions. Overall, increasing the NaCl and Mg(2+) in these binding reactions had little impact on the K(d). However, the HTNV N protein showed an enhanced specificity for HTNV vRNA as compared with the S segment open reading frame RNA or a nonviral RNA with increasing ionic strength and the presence of Mg(2+). In contrast, the assembly of Sin Nombre virus N protein-HTNV vRNA complexes was inhibited by the presence of Mg(2+) or an increase in the ionic strength. The K(d) values for HTNV and Sin Nombre virus N proteins were nearly identical for the S segment open reading frame RNA, showing weak affinity over several binding reaction conditions. Our data suggest a model in which specific recognition of the HTNV vRNA by the HTNV N protein resides in the noncoding regions of the HTNV vRNA.  相似文献   

20.
The mechanism(s) by which Sin Nombre (SN) hantavirus is maintained in deer mouse populations is unclear. Field studies indicate that transmission occurs primarily if not exclusively via a horizontal mechanism. Using an experimental deer mouse infection model in an outdoor laboratory, we tested whether infected rodents shed SN virus in urine, feces, and saliva, whether infected mice transmit infection to na?ve cage mates, and whether infected dams are able to vertically transmit virus or antibody to offspring. Using pooled samples of urine, feces, and saliva collected from mice infected 8 to 120 days postinoculation (p.i.), we found that a subset of saliva samples, collected between 15 and 90 days p.i., contained viral RNA. Parallel studies conducted on wild-caught, naturally infected deer mice showed a similar pattern of intermittent positivity, also only in saliva samples. Attempts to isolate virus through inoculation of cells or na?ve deer mice with the secreta or excreta of infected mice were uniformly negative. Of 54 attempts to transmit infection by cohousing infected deer mice with seronegative cage mates, we observed only a single case of transmission, which occurred between 29 and 42 days p.i. Dams passively transferred antibodies to neonatal pups via milk, and those antibodies persisted for at least 2 months after weaning, but none transmitted infection to their pups. Compared to other hantavirus models, SN virus is shed less efficiently and transmits inefficiently among cage mates. Transmission of SN virus among reservoir rodents may require factors that are not required for other hantaviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号