首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

2.
The subcellular localizations of guanylate cyclase and 3',5'-cyclic nucleotide phosphodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 80% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucleotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

3.
The subcellular localizations of guanylate cyclase and 3′,5′-cyclic nucleotide phophodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 980% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucelotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

4.
Factors released from eggs (FRE) of the sea urchin, Strongylocentrotus purpuratus, caused up to 20-fold increases in sperm cyclic AMP levels after a 1-min incubation. Putative cyclic nucleotide phosphodiesterase inhibitors such as theophylline acted in a synergistic manner with FRE to cause even greater increases in sperm cyclic AMP levels. This effect appeared to be specific for egg factors since various hormones (triiodothyronine, norepinephrine, histamine), nucleosides (adenosine, guanosine), nucleophiles (axide), anaesthetics (procaine), ionophores (X537A, A23187), metals (Mn2+) and neurotransmitters (acetylcholine) did not increase sperm cyclic AMP levels. Various mammalian tissue extracts (serum, uterus, adrenal, ovary, lung) also had no effect. We suggest that the activity which elevates the cyclic AMP of sea urchin spermatozoa is specifically associated with sea urchin eggs.  相似文献   

5.
After the repeated injection of sea urchin sperm guanylate cyclase into rabbits, antibodies to the enzyme were formed. These antibodies inhibited the particulate or the Triton-dispersed forms of the sperm enzyme by greater than 97%. The sperm adenylate cyclase, cyclic GMP phosphodiesterase, adenosine triphosphatase, guanosine triphosphatase, and 5'-nucleotidase enzymes were not affected by the antiserum. The antiserum inhibited the Triton-dispersed guanylate cyclase from rat heart, liver, lung, spleen, and kidney but did not inhibit the soluble form of the enzyme from any of these tissues. The inhibition of the Triton-dispersed enzyme in these tissues was partial, however, ranging from 30% (liver) to 70% (heart). These results provide evidence that adenylate cyclase is antigenically different from guanylate cyclase, and that the soluble form of guanylate cyclase is antigenically different from a particulate form of the enzyme in various rat tissues.  相似文献   

6.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

7.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

8.
The effect of an inhibitor of adenylate cyclase (ACI) was measured on some enzymes associated with cyclic nucleotide-regulated metabolism. Soluble guanylate cyclase was inhibited; both soluble and particulate cyclic GMP-phosphodiesterases were stimulated. Cyclic AMP phosphodiesterases were unaffected. In contrast, the activities of Na, K-ATPase, protein kinase, phosphorylase kinase, glycogen synthetase and a number of glycosidases were not altered by equipotent amounts of the inhibitor. It is concluded that this substance acts as a modulator of both cyclic AMP and cyclic GMP metabolism in heart and other tissues.  相似文献   

9.
The Lubrol-dispersed guanylate cyclase from sea urchin sperm was purified and isolated essentially free of detergent by GTP affinity chromatography, DEAE-Sephadex chromatography, and gel filtration. After removal of the detergent, the enzyme remained in solution in the presence of 20% glycerol. The specific activity of the purified enzyme was about 12 mumol of guanosine 3':5'-monophosphate (cyclic GMP) formed - min-1 - mg of protein-1 at 30 degrees, an activity about 4600 times that of a soluble guanylate cyclase purified recently from Escherichia coli (Macchia V., Varrone, S., Weissbach, H., Miller, D.L., and Pastan, I. (1975) J. Biol. Chem. 250, 6214-6217). The cyclic GMP phosphodiesterase activity was negligible and adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase was not detectable in the purified preparation. Cyclic AMP formation from ATP occurred at a rate of 0.002% of that of guanylate cyclase. In the absence of phosphodiesterase or guanosine triphosphatase inhibitors, 100% of the added GTP was converted to cyclic GMP. The purified enzyme required Mn2+ for maximum activity, the relative rates in the presence of Mg2+ or Ca2+ being less than 0.6% of the rates with Mn2+. The purified enzyme displayed classical Michaelis-Menten kinetics with respect to MnGTP (apparent Km is approximately equal to 170 muM) in contrast to the positively cooperative kinetic behavior displayed by the unpurified, detergent-dispersed, or particulate guanylate cyclase. The molecular weight of the purified enzyme was approximately 182,000 as estimated on Bio-Gel A-0.5m columns equilibrated in the presence or absence of 0.1 M NaCl. The unpurified, detergent-dispersed enzyme also migrated with an apparent molecular weight of 182,000 on columns equilibrated with 0.5% Lubrol WX and 0.1 M NaCl, but it migrated as a large aggregate (molecular weight is greater than 5 X 10(5)) on columns equilibrated in the absence of either the detergent of NaCl. After gel filtration, the unpurified, dispersed enzyme still yielded positive cooperative kinetic patterns as a function of MnGTP. Na dodecyl-SO4 gel electrophoresis of the enzyme after the DEAE-Sephadex or the gel filtration steps resulted in two major protein bands with estimated molecular weights of 118,000 and 75,000. Whether or not these protein bands represent the subunit molecular weights of guanylate cyclase is unknown at present.  相似文献   

10.
Guanylate cyclase has been purified 60-fold from cell extracts of the bacterium Caulobacter crescentus. It has a molecular weight of approximately 140,000 and is dependent upon Mn2+ for activity. Enzymic activity is unaffected by cyclic AMP, cyclic GMP or N6,O2′-dibutyryl cyclic AMP but is stimulated by N2,O2′-dibutyryl cyclic GMP. The partially purified preparation of guanylate cyclase does not contain detectable adenylate cyclase activity.  相似文献   

11.
Cyclic AMP and cyclic GMP content and activities of cyclic nucleotide metabolic enzymes were determined in intima and media of atherosclerotic and unaffected human aorta obtained shortly after death due to myocardial infarction. Cyclic AMP content in fatty streaks and atherosclerotic plaques was lower by three- and five-fold, respectively, as compared with uninvolved intima. Cyclic GMP level in atherosclerotic lesions was estimated to be three-fold higher than in grossly normal area. Basal activity of adenylate cyclase in fatty streaks and plaques was two- to six-fold lower than in unaffected intima. Besides, the ability of adenylate cyclase to be stimulated by the stable analogue of prostacyclin, carbacyclin, was suppressed in plaques. Guanylate cyclase activity in fatty streaks was 1.5- to three-fold higher than in normal tissue. The thiol-reducing agent, dithiothreitol, decreased the enzyme activity to normal level, suggesting the oxidative nature of guanylate cyclase activation in the lesion zone. There were no significant changes in cyclic AMP phosphodiestease activity in the regions of the atherosclerotic lesion. Cyclic GMP phosphodiesterase activity in atherosclerotic plaques was two-fold lower than in the intima of unaffected areas. We did not find differences in the content of cyclic nucleotides or related enzyme activities in the media of uninvolved areas of human aorta nor in the media underlying atherosclerotic lesions. Our findings suggest that development of human atherosclerotic lesions is accompanied by dramatic changes in the cyclic nucleotide metabolism featuring gradual hormonal receptor uncoupling from adenylate cyclase, activation of guanylate cyclase in fatty streaks and inhibition of cyclic GMP phosphodiesterase in plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

13.
Abstract— The uniformity and speed of inactivation of mouse brain adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterase were measured after 6 kW microwave irradiation (MWR). Inactivation of enzymes was uniform throughout the brain during heating and 100% loss of activity was evident after 300 ms. MWR. For comparison of effects of inactivation times on levels of cyclic nucleotides measured in regional brain areas, cyclic AMP and cyclic GMP were estimated after 1.5 kW MWR requiring 4 s of heating and 6 kW MWR requiring 300 ms. Except for corpus striatum, uniformly lower levels of cyclic AMP were measured following 300 ms vs. 4s MWR . There was no change in cyclic GMP levels in regional brain areas after 4s vs. 300 ms MWR . Cyclic AMP and cyclic GMP were measured from the same regional brain tissue samples after 300 ms and ratios calculated. The finding of much lower cyclic AMP:cyclic GMP ratios than had previously been reported suggests that slow inactivation times provide for the measurement of regional brain cyclic nucleotide values which are not consistent with the in-vivo state.  相似文献   

14.
Cyclic nucleotide concentrations and guanylate cyclase activity were measured in regenerating rat liver. Previous work has shown that in livers of partially hepatectomized rats the activity of a membrane-bound guanylate cyclase increases considerably during the early replicative phase [Kimura & Murad (1975) Proc. Natl. Acad. Sci. U.S.A.72, 1965-1969; Goridis & Reutter (1975) Nature (London) 257, 698-700]. Over the same time period after partial hepatectomy, increased tissue concentrations of cyclic GMP were found when the rats were killed under pentobarbital anaesthesia, but not when anaesthesia was omitted. The results obtained on hepatectomized livers were compared with the changes in guanylate cyclase activity and cyclic nucleotide concentrations during the response to galactosamine treatment. Here, a peak of guanylate cyclase activity and of cyclic GMP concentrations occurred at 8h, that is before the beginning of the proliferative response. Both parameters were normal at the time of increased DNA synthesis. There does not, therefore, seem to be a consistent correlation between changes in guanylate cyclase activity or concentrations of cyclic GMP and an increase in liver DNA synthesis. A modest rise in cyclic AMP concentrations was found, however, in livers of galactosamine-treated rats, which was coincident with the time of DNA synthesis.  相似文献   

15.
Cyclic GMP and activators (acetylcholine, E. coli heat-stable toxin) of guanylate cyclase were capable of completely replacing the helper cell or interleukin 2 requirement for gamma-interferon (IFN gamma) production by Lyt-1-,2+ cells from C57BL/6 mouse spleen cells. The cyclic GMP help was independent of DNA synthesis or proliferation in the IFN gamma-producing cells, because cyclic GMP reversed mitomycin C blockage of IFN gamma production but did not reverse the inhibition of DNA synthesis. Thus, the findings presented here are unrelated to the question of the second messenger role of cyclic GMP in the activation of lymphocytes for DNA synthesis and cellular proliferation. The cyclic GMP help for IFN gamma production was antagonized by cyclic AMP and inducers (isoproterenol) of adenylate cyclase.  相似文献   

16.
Receptor-mediated regulation of guanylate cyclase activity in spermatozoa   总被引:2,自引:0,他引:2  
Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase activity. The guanylate cyclase of sea urchin spermatozoa is a glycoprotein and it is localized entirely on the plasma membrane. When intact sea urchin sperm cells were incubated with the appropriate peptide for time periods as short as 5 s and subsequently homogenized in detergent, guanylate cyclase activity was found to be as low as 10% of the activity of cells not treated with peptide. The peptides showed complete species specificity and analogues of one peptide (speract) caused decreases in enzyme activity coincident with their receptor binding properties. The peptides did not inhibit enzyme activity when added after detergent solubilization of the enzyme. When detergent-solubilized spermatozoa were incubated at 22 degrees C, guanylate cyclase activity declined in previously nontreated cells to the peptide-treated level. The rate of decline was dependent on temperature and protein concentration. When spermatozoa were first incubated with 32P, the decrease in guanylate cyclase activity was accompanied by a shift in the apparent molecular weight of a major plasma membrane protein (160,000-150,000) and a loss of 32P label from the 160,000 band. Other agents (Monensin A, NH4Cl) which were capable of stimulating sperm respiration and motility also caused decreases of guanylate cyclase activity when added to intact but not detergent-solubilized spermatozoa. The maximal decrease in guanylate cyclase activity occurred 5-10 min after addition of these agents. The enzyme response to Monensin A required extracellular Na+ suggestive that the ionophore caused the effect on guanylate cyclase activity by virtue of its ability to catalyze Na+/H+ exchange. These studies demonstrate that guanylate cyclase activity of sperm cells can be altered by the specific interaction of egg-associated peptides with their plasma membrane receptors.  相似文献   

17.
Cyclic AMP and cyclic GMP phosphodiesterase activities (3' : 5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17) were demonstrated in the isolated intima, media, and adventitia of rabbit aorta. The activity for cyclic AMP hydrolysis in the intima was 2.7-fold higher than that for cyclic GMP hydrolysis. The activity for cyclic AMP hydrolysis in the media was approximately equal to that for cyclic GMP hydrolysis, but in the adventitia, cyclic GMP hydrolytic activity was 2.1-fold higher than cyclic AMP hydrolytic activity. Distribution of the activator of the phosphodiesterase was studied in the three layers. Each layer contained the activator. The activator was predominantly localized in the smooth muscle layer (the media). The effect of the activator and Ca2+ on the media cyclic AMP and cyclic GMP phosphodiesterase was also briefly studied. The activity of the cyclic GMP phosphodiesterase was stimulated by micromolar concentration of Ca2+ in the presence of the activator. However, the activity of the cyclic AMP phosphodiesterase was not significantly stimulated by Ca2+ up to 100 muM in the presence of the activator. Above 90% of cyclic nucleotide phosphodiesterase activity in the whole aorta was found to be derived from the media. A major portion (60-70%) of the media enzyme was found in 105 000 times g supernatant. Cyclic AMP phosphodiesterase in the supernatant was partially purified through Sepharose 6B column chromatography and partially separated from cyclic GMP phosphodiesterase. Using a partially purified preparation from the 105 000 times g supernatant the main kinetic parameters were specified as follows: 1) The pH optimum was found to be about 9.0 using Tris-maleate buffer. The maximum stimulation of the enzyme by Mg2+ was achieved at 4mM of MgC12. 2) High concentration of cyclic GMP (0.1 mM) inhibited noncompetitively the enzyme activity, and the activity was not stimulated at any tested concentration of cyclic GMP. 3) Activity-substrate concentration relationship revealed a high affinity (Km equals 1.0 muM) and low affinity (Km equals 45 muM) for cyclic AMP. The homogenate and 105 000 times g supernatant of the media also showed non-linear kinetics similar to the Sepharose 6B preparation and their apparent Km values for cyclic AMP hydrolysis were 1.2 muM and 36-40 muM and an enzyme extracted by sonication from 105 000 times g precipitate also exhibited non-linear kinetics (Km equals 5.1 muM and 70 muM). 4) Papaverine exhibited much stronger inhibition on the aorta cyclic AMP phosphodiesterase (50% inhibition of the intima enzyme, I5 o at 0.62 muM, I5 o of the media at 0.62 muM and I5 o of the adventitia at 1.0 muM) than on the brain (I5 o at 8.5 muM) and serum (I5 o at 20 muM) cyclic AMP phosphodiesterase, while theophylline inhibited these enzymes similarly. However, cyclic GMP phosphodiesterases in all tissues examined were inhibited similarly, not only by theophylline but also by papaverine.  相似文献   

18.
Pyruvate increased cyclic GMP levels in rat hepatocytes. The effects were observed without or with 1-methyl-3-isobutylxanthine. Lactate, acetate, oxaloacetate, alpha-ketoglutarate, succinate, acetoacetate and beta-hydroxybutyrate also increased cyclic GMP levels. Some compounds increased cyclic GMP in kidney cortex slices. The effects were dependent upon Ca2+ in the medium. Cyclic AMP was increased 30-50% by some of these substances with 2.6 mM Ca2+. Rotenone, oligomycin, antimycin, dinitrophenol, KCN, and arsenate decreased GTP and ATP, basal cyclic GMP and the pyruvate effect, but did not alter cyclic AMP. Although fluoroacetate alone had no effect on cyclic nucleotides, GTP, or ATP, it potentiated the pyruvate effect on cyclic GMP. Adenosine and guanosine increased cyclic GMP and GTP to a similar extent of 30-50%. Aminooxyacetate, cycloserine, pentenoic acid and mepacrine decreased the pyruvate effect while cycloserine or mepacrine alone increased cyclic GMP. Citrate and mepacrine inhibited soluble and particulate guanylate cyclase from rat liver while cycloserine and acetoacetate increased guanylate cyclase activity. None of the other compounds altered guanylate cyclase activity. These results indicate that various metabolites and inhibitors can alter cyclic GMP accumulation in hepatocytes and renal cortex slices. Several mechanisms may be involved in these effects.  相似文献   

19.
A gene from Rhizobium meliloti coding for an adenylate cyclase was sequenced, and the deduced protein sequence was compared with those of other known adenylate cyclases. No similarity could be detected with the procaryotic counterparts. However, striking similarity was found with the catalytic region of Saccharomyces cerevisiae adenylate cyclase, the cytoplasmic domains of bovine adenylate cyclase, and two mammalian guanylate cyclases. The gene was fused to the enteric beta-galactosidase, and the chimeric protein was purified by affinity chromatography. This fusion protein was found to direct the synthesis of cyclic AMP in vitro. This activity was strongly inhibited by the presence of GTP, but no cyclic GMP synthesis could be detected in conditions permitting cyclic AMP synthesis.  相似文献   

20.
Enzymes in particulate fractions from sea urchin sperm and in soluble fractions from rat lung were shown to catalyze the formation of inosine 3',5'-monophosphate (cyclic IMP) and of 2'-deoxyguanosine 3',5'-monophosphate (cyclic dGMP) from ITP and dGTP, respectively. With sea urchin sperm particulate fractions, Mn2+ was an essential metal cofactor for inosinate, deoxyguanylate, guanylate and adenylate cyclase activities. Heat-inactivation studies differentiated inosinate and deoxyguanylate cyclase activities from adenylate cyclase, but indicated an association of these activities with guanylate cyclase. Preincubation of sea urchin sperm particulate fractions with trypsin altered in a very similar manner guanylate, inosinate, and deoxyguanylate cyclase activities, and various metals and metal-nucleotide combinations protected the three cyclase activities to comparable degrees against trypsin. The relative guanylate, deoxyguanylate and inosinate cyclase activities at 0.1 mM nucleoside triphosphate were 1.0, 0.5 and 0.08, respectively. With these three cyclase activities, plots of reciprocal velocities against reciprocal Mn2+-nucleoside triphosphate concentrations were concave upward, suggesting positive homotropic effects. With rat lung soluble preparations, relative guanylate, deoxyguanylate, inosinate and adenylate cyclase activities at 0.09 mM nucleoside triphosphate were 1.0, 1.7, 0.1 and 0, respectively. MnGTP was a competitive inhibitor of deoxyguanylate cyclase activity (Ki equals 12.2 muM) and MndGTP was a competitive inhibitor of guanylate cyclase activity (Ki equals 16.2 muM). Inhibition studies using ITP were not conducted. When soluble fractions from rat lung were applied to Bio-Gel A 1.5 m columns, elution profiles of guanylate, deoxyguanylate and inosinate cyclase activities were similar. These results suggest that deoxyguanylate, guanylate and inosinate cyclase activities reside within the same protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号