首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GenBank.   总被引:2,自引:0,他引:2       下载免费PDF全文
The GenBank (Registered Trademark symbol) sequence database incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (Web) or Sequin programs to format and send sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE (Registered Trademark symbol) s from published articles describing the sequences are included as an additional source of biological annotation through the PubMed search system. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, Email, and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the URL: http://www.ncbi.nlm.nih.gov  相似文献   

2.
GenBank   总被引:51,自引:4,他引:47       下载免费PDF全文
The GenBank((R))sequence database incorporates publicly available DNA sequences of >55 000 different organisms, primarily through direct submission of sequence data from individual laboratories and large-scale sequencing projects. Most submissions are made using the BankIt (Web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping and protein structure information, plus the biomedical literature via PubMed. Sequence similarity searching is provided by the BLAST family of programs. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. NCBI also offers a wide range of WWW retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the NCBI home page at http://www.ncbi.nlm.nih.gov  相似文献   

3.
GenBank          下载免费PDF全文
GenBank (R) is a comprehensive sequence database that contains publicly available DNA sequences for more than 119 000 different organisms, obtained primarily through the submission of sequence data from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the BankIt (web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI home page at: http://www.ncbi.nlm.nih.gov.  相似文献   

4.
GenBank          下载免费PDF全文
The GenBank sequence database incorporates publicly available DNA sequences of more than 105 000 different organisms, primarily through direct submission of sequence data from individual laboratories and large-scale sequencing projects. Most submissions are made using the BankIt (web) or Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI’s integrated retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical literature via PubMed. Sequence similarity searching is provided by the BLAST family of programs. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. NCBI also offers a wide range of World Wide Web retrieval and analysis services based on GenBank data. The GenBank database and related resources are freely accessible via the NCBI home page at http://www.ncbi.nlm.nih.gov.  相似文献   

5.
GenBank.   总被引:4,自引:1,他引:3       下载免费PDF全文
The GenBank sequence database incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from authors and from large-scale sequencing projects. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive coverage. GenBank continues to focus on quality control and annotation while expanding data coverage and retrieval services. An integrated retrieval system, known asEntrez, incorporates data from the major DNA and protein sequence databases, along with genome maps and protein structure information. MEDLINE abstracts from published articles describing the sequences are also included as an additional source of biological annotation. Sequence similarity searching is offered through the BLAST family of programs. All of NCBI's services are offered through the World Wide Web. In addition, there are specialized server/client versions as well as FTP and e-mail server access.  相似文献   

6.
GenBank.   总被引:5,自引:2,他引:3       下载免费PDF全文
The GenBank sequence database continues to expand its data coverage, quality control, annotation content and retrieval services. GenBank is comprised of DNA sequences submitted directly by authors as well as sequences from the other major public databases. An integrated retrieval system, known as Entrez, contains data from GenBank and from the major protein sequence and structural databases, as well as related MEDLINE abstracts. Users may access GenBank over the Internet through the World Wide Web and through special client-server programs for text and sequence similarity searching. FTP, CD-ROM and e-mail servers are alternate means of access.  相似文献   

7.
The National Center for Biotechnology Information (NCBI) integrates data from more than 20 biological databases through a flexible search and retrieval system called Entrez. A core Entrez database, Entrez Nucleotide, includes GenBank and is tightly linked to the NCBI Taxonomy database, the Entrez Protein database, and the scientific literature in PubMed. A suite of more specialized databases for genomes, genes, gene families, gene expression, gene variation, and protein domains dovetails with the core databases to make Entrez a powerful system for genomic research. Linked to the full range of Entrez databases is the NCBI Map Viewer, which displays aligned genetic, physical, and sequence maps for eukaryotic genomes including those of many plants. A specialized plant query page allow maps from all plant genomes covered by the Map Viewer to be searched in tandem to produce a display of aligned maps from several species. PlantBLAST searches against the sequences shown in the Map Viewer allow BLAST alignments to be viewed within a genomic context. In addition, precomputed sequence similarities, such as those for proteins offered by BLAST Link, enable fluid navigation from unannotated to annotated sequences, quickening the pace of discovery. NCBI Web pages for plants, such as Plant Genome Central, complete the system by providing centralized access to NCBI's genomic resources as well as links to organism-specific Web pages beyond NCBI.  相似文献   

8.
Database resources of the National Center for Biotechnology Information   总被引:66,自引:11,他引:55       下载免费PDF全文
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval and resources that operate on the data in GenBank and a variety of other biological data made available through NCBI's Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing pages, GeneMap'99, Davis Human-Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP) pages, Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP) pages, SAGEmap, Online Mendelian Inheritance in Man (OMIM) and the Molecular Modeling Database (MMDB). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih. gov  相似文献   

9.
GenBank.   总被引:8,自引:3,他引:5       下载免费PDF全文
The GenBank sequence database continues to expand its data coverage, quality control, annotation content and retrieval services for the scientific community. Besides handling direct submissions of sequence data from authors, GenBank also incorporates DNA sequences from all available public sources; an integrated retrieval system, known as Entrez, also makes available data from the major protein sequence and structural databases, and from U.S. and European patents. MIDLINE abstracts from published articles describing the sequences are also included as an additional source of biological annotation for sequence entries. GenBank supports distribution of the data via FTP, CD-ROM, and E-mail servers. Network server-client programs provide access to an integrated database for literature retrieval and sequence similarity searching.  相似文献   

10.
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov.  相似文献   

11.
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.  相似文献   

12.
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI's Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap'99, Human-Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheri-tance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih. gov.  相似文献   

13.
BLAST (Basic Local Alignment Search Tool) searches against DNA and protein sequence databases have become an indispensable tool for biomedical research. The proliferation of the genome sequencing projects is steadily increasing the fraction of genome-derived sequences in the public databases and their importance as a public resource. We report here the availability of Genomic BLAST, a novel graphical tool for simplifying BLAST searches against complete and unfinished genome sequences. This tool allows the user to compare the query sequence against a virtual database of DNA and/or protein sequences from a selected group of organisms with finished or unfinished genomes. The organisms for such a database can be selected using either a graphic taxonomy-based tree or an alphabetical list of organism-specific sequences. The first option is designed to help explore the evolutionary relationships among organisms within a certain taxonomy group when performing BLAST searches. The use of an alphabetical list allows the user to perform a more elaborate set of selections, assembling any given number of organism-specific databases from unfinished or complete genomes. This tool, available at the NCBI web site http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/genom_table_cgi, currently provides access to over 170 bacterial and archaeal genomes and over 40 eukaryotic genomes.  相似文献   

14.
The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.  相似文献   

15.
PISCES: a protein sequence culling server   总被引:21,自引:0,他引:21  
PISCES is a public server for culling sets of protein sequences from the Protein Data Bank (PDB) by sequence identity and structural quality criteria. PISCES can provide lists culled from the entire PDB or from lists of PDB entries or chains provided by the user. The sequence identities are obtained from PSI-BLAST alignments with position-specific substitution matrices derived from the non-redundant protein sequence database. PISCES therefore provides better lists than servers that use BLAST, which is unable to identify many relationships below 40% sequence identity and often overestimates sequence identity by aligning only well-conserved fragments. PDB sequences are updated weekly. PISCES can also cull non-PDB sequences provided by the user as a list of GenBank identifiers, a FASTA format file, or BLAST/PSI-BLAST output.  相似文献   

16.
The Current Study aimed to investigate the possible role of Heparanase protein (HPSE-1, [Entrez Pubmed ref|NP_001092010.1|, heparanase isoform 1 preproprotein [Homo sapiens]) in evolution by studying the phylogenetic relationship and divergence of HPSE-1 gene using computational methods. The Human HPSE protein sequences from various species were retrieved from GenBank database and were compared using sequence alignment. Multiple sequence alignment was done using Clustal-W with defaults and phylogenetic trees for the gene were built using neighbor-joining method as in BLAST 2.2.26+ version. A total of 112 BLAST hits were found for the heparanase query sequence and these hits showed putative conserved domain, Glyco_hydro_79n superfamily. We then narrowed down the search by manually deleting the proteins which were not HPSE-1. These sequences were then subjected to phylogenetic analyses using the PhyML and TreeDyn software. Our study indicated that HPSE-1 is a conserved protein in classes Mammalia, Aves, Amphibia, Actinopterygii and Insecta emphasizing its importance in the physiology of cell membranes. Occurrence of this gene in evolution with conserved sites strengthens the role of HPSE-1 gene and helps in better understanding the biochemical processes that may lead to cancer.  相似文献   

17.
NCBI的数据库资源及其应用   总被引:14,自引:0,他引:14  
王哲  黄高升 《生命科学》2002,14(1):59-62
NCBI是美国的一个大型生物信息学系统,它主要通过NCBI网站为全世界的科学家服务,它拥有GenBank,RefSeq,UniGene,dbSNP等等多种大型生物学数据库,并且提供了多种数据库查询工具,如:Entrez,PubMed,LocusLink,TaxonomyBrowser等等,以及多种数据库分析资源,对于我们查询文献,人类基因组信息、基因表达、蛋白质结构、肿瘤遗传信息,以及不同种属遗传信息等等有非常大的帮助。是一个非常重要的生物医学资源。  相似文献   

18.
HCVDB   总被引:2,自引:0,他引:2  
To date, more than 30 000 hepatitis C virus (HCV) sequences have been deposited in the generalist databases DNA Data Bank of Japan (DDBJ), EMBL Nucleotide Sequence Database (EMBL) and GenBank. The main difficulties with HCV sequences in these databases are their retrieval, annotation and analyses. To help HCV researchers face the increasing needs of HCV sequence analyses, we developed a specialised database of computer-annotated HCV sequences, called HCVDB. HCVDB is re-built every month from an up-to-date EMBL database by an automated process. HCVDB provides key data about the HCV sequences (e.g. genotype, genomic region, protein names and functions, known 3-dimensional structures) and ensures consistency of the annotations, which enables reliable keyword queries. The database is highly integrated with sequence and structure analysis tools and the SRS (LION bioscience) keywords query system. Thus, any user can extract subsets of sequences matching particular criteria or enter their own sequences and analyse them with various bioinformatics programs available on the same server. AVAILABILITY: HCVDB is available from http://hepatitis.ibcp.fr.  相似文献   

19.
The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) is maintained at the European Bioinformatics Institute (EBI) in an international collaboration with the DNA Data Bank of Japan (DDBJ) and GenBank at the NCBI (USA). Data is exchanged amongst the collaborating databases on a daily basis. The major contributors to the EMBL database are individual authors and genome project groups. Webin is the preferred web-based submission system for individual submitters, whilst automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via ftp, email and World Wide Web interfaces. EBI's Sequence Retrieval System (SRS), a network browser for databanks in molecular biology, integrates and links the main nucleotide and protein databases plus many specialized databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT.  相似文献   

20.
In this study, we collected and analyzed DNA sequence data for 789 previously mapped RFLP probes from Sorghum bicolor (L.) Moench. DNA sequences, comprising 894 non-redundant contigs and end sequences, were searched against three GenBank databases, nucleotide (nt), protein (nr) and EST (dbEST), using BLAST algorithms. Matching ESTs were also searched against nt and nr. Translated DNA sequences were then searched against the conserved domain database (CDD) to determine if functional domains/motifs were congruent with the proteins identified in previous searches. More than half (500/894 or 56%) of the query sequences had significant matches in at least one of the GenBank searches. Overall, proteins identified for 148 sequences (17%) were consistent among all searches, of which 66 sequences (7%) contained congruent coding domains. The RFLP probe sequences were also evaluated for the presence of simple sequence repeats (SSRs) and 60 SSRs were developed and assayed in an array of sorghum germplasm comprising inbreds, landraces and wild relatives. Overall, these SSR loci had lower levels of polymorphism ( D = 0.46, averaged over 51 polymorphic loci) compared with sorghum SSRs that were isolated by library hybridization screens ( D = 0.69, averaged over 38 polymorphic loci). This result was probably due to the relatively small proportion of di-nucleotide repeat-containing markers (42% of the total SSR loci) obtained from the DNA sequence data. These di-nucleotide markers also contained shorter repeat motifs than those isolated from genomic libraries. Based on BLAST results, 24 SSRs (40%) were located within, or near, previously annotated or hypothetical genes. We determined the location of 19 of these SSRs relative to putative coding regions. In general, SSRs located in coding regions were less polymorphic ( D = 0.07, averaged over three loci) than those from gene flanking regions, UTRs and introns ( D = 0.49, averaged over 16 loci). The sequence information and SSR loci generated through this study will be valuable for application to sorghum genetics and improvement, including gene discovery, marker-assisted selection, diversity and pedigree analyses, comparative mapping and evolutionary genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号