首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease. Received: 7 May 1998 / Accepted: 16 July 1998  相似文献   

2.
The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease.  相似文献   

3.
Leflunomide (LFM) is a novel anti-inflammatory and immunosuppressive drug, and inhibits the growth of cytokine-stimulated lymphoid cells in vitro. The effect of LFM on haploid and diploid cells of Saccharomyces cerevisiae was investigated to elucidate the molecular mechanism of action of the drug. Using a halo assay, LFM was shown to enhance the cell cycle arrest of haploid cells induced by mating pheromone alpha-factor. LFM also inhibited sporulation of diploid cells completely. S. cerevisiae genes which were cloned to suppress the anti-proliferative effect when present in increased copy number were introduced and examined for their activity to suppress the effect of LFM. Out of them, MLF4/SSH4, was found to suppress the sporulation-inhibitory effect of LFM. However, MLF4 failed to suppress the enhancing effect of LFM on pheromone response. Thus, LFM is suggested to act on haploid and diploid cells by different mechanisms.  相似文献   

4.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

5.
We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H+ symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.  相似文献   

6.
Human Nedd4 ubiquitin ligase is involved in protein trafficking, signal transduction and oncogenesis. Nedd4 with an inactive WW4 domain is toxic to yeast cells. We report here that actin cytoskeleton is abnormal in yeast cells expressing the NEDD4 or NEDD4w4 gene and these cells are more sensitive to Latrunculin A, an actin-depolymerizing drug. These phenotypes are less pronounced when a mutation inactivating the catalytic domain of the ligase has been introduced. In contrast, overexpression of the LAS17 gene, encoding an activator of the Arp2/3 actin nucleating complex, is detrimental to NEDD4w4-expressing cells. The level of Las17p is increased in cells overproducing Nedd4w4 and this depends partially on its catalytic domain. Expression of genes encoding Nedd4 variants, like overexpression of LAS17, suppresses the growth defect of the arp2-1 strain. Our results suggest that human Nedd4 ligase inhibits yeast cell growth by disturbing the actin cytoskeleton, in part by increasing Las17p level, and that Nedd4 ubiquitination targets may include actin cytoskeleton-associated proteins conserved in evolution.  相似文献   

7.
The antifungal and immunosuppressive drug rapamycin arrests the cell cycle in G1-phase in both yeast and mammalian cells. In mammalian cells, rapamycin selectively inhibits phosphorylation and activation of p70 S6 kinase (p70S6K), a protein involved in the translation of a subset of mRNAs, without affecting other known kinases. We now report that rapamycin causes chromosome malsegregation in mammalian and yeast cells. Chromosome malsegregation was determined by metaphase chromosome analysis of human lymphocytes and lymphoblasts, detection of CREST-positive micronuclei in human lymphoblasts and Chinese hamster embryonic fibroblast (CHEF) cells, and selection of doubly prototrophic cells in a specially constructed yeast strain. The number of ana-telophases with displaced chromosomes and interphase and mitotic cells with an irregular number of centrosomes was also determined in CHEF cells. In quiescent mammalian cells (human lymphocytes and CHEF cells) induced with growth factor to re-enter the cell cycle, rapamycin was effective when cells were exposed at the time of p70S6K activation. In yeast, rapamycin was more effective when treatment was started in G1- than in G2-synchronized cells. Cells from ataxia telangiectasia (A-T) patients are characterized by chromosome instability and have recently been found to be resistant to the growth-inhibiting effect of rapamycin. We found that an A-T lymphoblastoid cell line was also resistant to the induction of chromosome malsegregation by rapamycin, but the level of spontaneous aneuploidy was higher than in normal cells. In yeast, the induction of chromosome malsegregation was dependent on the presence of a wild-type TUB2 gene, encoding the β-subunit of tubulin. The finding that rapamycin acts in different cell types and organisms suggests that the drug affects a conserved step important for proper segregation of chromosomes. One or more proteins required for chromosome segregation could be under the control of the rapamycin-sensitive pathway. Received: 3 August 1998 / Accepted: 20 August 1998  相似文献   

8.
9.
Abstract

The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO? after incubation with NO? donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe3+ by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).  相似文献   

10.
Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames (ORF), orfH79 is a mitochondria chimeric gene being responsible for the CMS trait in Honglian (HL) rice. Weakly expressed ORFH79 strongly inhibits the growth of yeast cells. In addition, the content of reactive oxygen species (ROS) in the transformants that expressed ORFH79 was increased by 31%, and ATP was decreased by 41% compared with the control. These results showed ORFH79 peptide is toxic to yeast cells.  相似文献   

11.
Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow‐type anion channel homolog 3 gene, GsSLAH3 , was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3? than wild‐type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.  相似文献   

12.
Summary The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-t C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-t mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene.  相似文献   

13.
The Saccharomyces cerevisiae gene RHC21 is a homologue of the fission yeast rad21 +gene, which affects the sensitivity of cells to γ-irradiation and is essential for cell growth in S. pombe. Disruption of the RHC21 gene showed that it is also essential in S. cerevisiae. To examine its function in cell growth further, we have isolated temperature-sensitive mutants for the RHC21 gene and characterized one of them, termed rhc21-sk16. When this mutant was incubated at 36° C, the percentage of large-budded cells was increased. Most of the large-budded cells had aberrant nuclear structures, such as unequally extended nuclear DNA with incompletely elongated spindles across the mother-daughter neck or only in a mother cell. Furthermore, a circular minichromosome is more unstable in the mutant than in the wild-type, even at 25° C. Flow cytometry showed that the bulk of DNA replication takes place normally at the restrictive temperature in the mutant. These results indicated that the RHC21 gene is required for proper segregation of the chromosomes. In addition, we found that the mutant is sensitive not only to UV radiation and γ-rays but also to the antimicrotubule agent nocodazole at 25° C. This suggests that the RHC21 gene is involved in the microtubule function. We discuss how the RHC21 gene product may be involved in chromosome segregation and microtubule function. Received: 10 March 1997 / Accepted: 1 September 1997  相似文献   

14.
Calcineurin, which is a Ca2+/calmodulin-dependent protein phosphatase, is a key mediator in calcium signaling in diverse biological processes and of clinical importance as the target of the immunosuppressant FK506. To identify a mutant(s) in which calcineurin is activated, inhibiting cellular growth as a result, we screened for a mutant(s) whose temperature sensitivity would be suppressed by FK506 from the budding yeast non-essential gene deletion library. We found that the temperature sensitivity of cells in which the conserved Verprolin VRP1 gene had been deleted, which gene is required for actin organization and endocytosis, was suppressed by either FK506 or by cnb1 deletion. Indeed, the calcineurin activity increased significantly in the ?vrp1 cells. Finally, we demonstrated that the ?vrp1 strain to be useful as an indicator in a positive screening for bioactive compounds inhibiting calcineurin.  相似文献   

15.
In Saccharomyces cerevisiae, cyclic AMP is required for cellular growth. In this study we show that cAMP also specifically inhibits the G1-S transition of the S. cerevisiae cell cycle by increasing the critical cell size required at start, the major yeast cell cycle control step. In fact: (a) addition of cAMP delays the time of entering into the S budded phase of small G1 cells, while it is ineffective on large fast-growing cells. (b) If cell growth is strongly depressed, cAMP permanently inhibits cell cycle commitment of cells arrested at the α-factor-sensitive step. The cell fraction inhibited by cAMP is inversely correlated with the average cell size of treated populations. (c) The critical protein content (Ps) and the critical cell volume (VB) required for budding in unperturbed exponentially growing yeast populations are largely increased by cAMP. On these bases, we propose a new cAMP role at start.  相似文献   

16.
【目的】基于人类基因文库,构建一个筛选抑制酿酒酵母生长的人类基因的方法,并运用此方法筛选含有生长抑制性人源蛋白质的酿酒酵母,用于分析人类基因的生理功能及其抑制剂的寻找。【方法】利用Gateway~(TM)重组技术将人类蛋白质编码基因构建到酿酒酵母表达质粒中。得到的质粒分别转化酿酒酵母细胞中,分析哪些基因的表达会抑制酿酒酵母的生长,并用绿色荧光蛋白标签对典型候选基因在酿酒酵母中的定位进行观察。【结果与结论】本研究建立了抑制酿酒酵母生长的人类基因的筛选方法,并运用此方法成功地从2991个人类蛋白质编码基因中筛选到29个显著抑制酿酒酵母生长的基因。其中一些是引起人类疾病的致病基因。例如,PDLIM4参与到骨质疏松症和前列腺癌的形成和发展,但其生理功能尚不清楚。我们的研究可能为揭示这些候选基因的功能和调节机制提供新的途径。  相似文献   

17.
Summary SummaryYeast cultures progressing from the exponential to the stationary phase of growth showed changes in cell sensitivity to physical agents such as UV light, heat shock at 52° C and the chemical mutagens ethyl methane sulphonate, nitrous acid and mitomycin C.Exponential phase cells showed maximum resistance to UV light and minimum resistance to heat shock and the three chemicals. The increased resistance of exponential phase cells to UV light was shown to be dependent upon the functional integrity of the RAD 50 gene.Treatment of growing yeast cultures with radioactively labelled ethyl methane sulphonate indicated the preferential uptake of radioactivity during the sensitive exponential stage of growth. The results indicated that the differential uptake of the chemical mutagens was responsible for at least a fraction of the variations in cell sensitivity observed in yeast cultures at different phases of growth.  相似文献   

18.
Malolactic fermentation (MLF) plays an important role in the production of wine, especially red wines, resulting in microbial stability, deacidification, as well as contributing to the aroma profile. MLF can be influenced by a number of factors. In this study, the influence of pH and ethanol on expression of the structural malolactic enzyme gene (mle) from Lactobacillus plantarum was investigated in a synthetic wine media, as well as in wine using quantitative PCR. Expression of mle was shown to be inducible by the presence of malic acid, with increased expression in the middle of MLF. Expression of mle was also shown to be increased at low pH values and decreased in the presence of ethanol. This indicates the role of MLF in acid tolerance and the negative impact of ethanol on the completion of MLF. The results therefore provide further evidence that L. plantarum should be applied as co-inoculation for MLF where alcohol will initially not have a negative impact on the malic acid degradation.  相似文献   

19.
The yeast SKP1 gene and its human homolog p19 skp1 encode a kinetochore protein required for cell cycle progression at both the DNA synthesis and mitosis phases of the cell cycle. In orchids we identified a cDNA (O108) that is expressed in early stages of ovule development and is homologous to the yeast SKP1. Based on the orchid O108 cDNA clone, we identified and characterized an Arabidopsis thaliana (L.) Heynh. cDNA designated ATskp1 that also has high sequence similarity to yeast SKP1. The Arabidopsis ATskp1 is a single-copy gene that mapped to chromosome 1. The expression of the ATskp1 gene was highly correlated with meristem activity in that its mRNA accumulated in all of the plant meristems including the vegetative shoot meristem, inflorescence and floral meristems, root meristem, and in the leaf and floral organ primordia. In addition, ATskp1 was also highly expressed in the dividing cells of the developing embryo, and in other cells that become multinucleate or undergo endoreplication events such as the endosperm free nuclei, the tapetum and the endothelium. Based on its spatial pattern of expression, ATskp1 is a marker for cells undergoing division and may be required for meristem activity. Received: 6 June 1997 / Accepted: 2 July 1997  相似文献   

20.
Fission yeast (Schizosaccharomyces pombe) requires inositol for growth, mating and sporulation. To define putative genes that are involved in the processing and transduction of the inositol signal, mutants that are temperature sensitive for growth and sporulation were selected on a medium containing non-limiting amounts of inositol. Two such mutants (ksg1-208 and ksg1-358) were analyzed, which are impaired in mating and sporulation at 30° C and undergo growth arrest in the G2 phase of the cell cycle at 35° C. The ksg1 gene was isolated by functional complementation. It maps on the left arm of chromosome II and encodes a putative 592-amino acid protein which exhibits good structural homology to a human 3-phosphoinositide-dependent protein kinase (PDK1) and its rat and Drosophila homologues. The two mutants have the same substitution at amino acid position 159: a glycine residue is replaced by glutamic acid. Deletion of the gene is lethal for haploid cells. We propose that ksg1 is involved in one or several phosphoinositide signalling processes that are responsible for control of the life cycle. Received: 24 September 1998 / Accepted: 8 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号