首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

2.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

3.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

4.
S W Lagakos 《Biometrics》1979,35(1):139-156
This paper concerns general right censoring and some of the difficulties it creates in the analysis of survival data. A general formulation of censored-survival processes leads to the partition of all models into those based on noninformative and informative censoring. Nearly all statistical methods for censored data assume that censoring is noninformative. Topics considered within this class include: the relationships between three models for noninformative censoring, the use of likelihood methods for inferences about the distribution of survival time, the effects of censoring on the K-sample problem, and the effects of censoring on model testing. Also considered are several topics which relate to informative censoring models. These include: problems of nonidentifiability that can be encountered when attempting to assess a set of data for the type of censoring in effect, the consequences of falsely assuming that censoring is noninformative, and classes of informative censoring models.  相似文献   

5.
Current status data arise due to only one feasible examination such that the failure time of interest occurs before or after the examination time. If the examination time is intrinsically related to the failure time of interest, the examination time is referred to as an informative censoring time. Such data may occur in many fields, for example, epidemiological surveys and animal carcinogenicity experiments. To avoid severely misleading inferences resulted from ignoring informative censoring, we propose a class of semiparametric transformation models with log‐normal frailty for current status data with informative censoring. A shared frailty is used to account for the correlation between the failure time and censoring time. The expectation‐maximization (EM) algorithm combining a sieve method for approximating an infinite‐dimensional parameter is employed to estimate all parameters. To investigate finite sample properties of the proposed method, simulation studies are conducted, and a data set from a rodent tumorigenicity experiment is analyzed for illustrative purposes.  相似文献   

6.
The observation of repeated events for subjects in cohort studies could be terminated by loss to follow-up, end of study, or a major failure event such as death. In this context, the major failure event could be correlated with recurrent events, and the usual assumption of noninformative censoring of the recurrent event process by death, required by most statistical analyses, can be violated. Recently, joint modeling for 2 survival processes has received considerable attention because it makes it possible to study the joint evolution over time of 2 processes and gives unbiased and efficient parameters. The most commonly used estimation procedure in the joint models for survival events is the expectation maximization algorithm. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of the continuous hazard functions in a general joint frailty model with right censoring and delayed entry. The simulation study demonstrates that this semiparametric approach yields satisfactory results in this complex setting. As an illustration, such an approach is applied to a prospective cohort with recurrent events of follicular lymphomas, jointly modeled with death.  相似文献   

7.
Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.  相似文献   

8.
Clustered interval‐censored data commonly arise in many studies of biomedical research where the failure time of interest is subject to interval‐censoring and subjects are correlated for being in the same cluster. A new semiparametric frailty probit regression model is proposed to study covariate effects on the failure time by accounting for the intracluster dependence. Under the proposed normal frailty probit model, the marginal distribution of the failure time is a semiparametric probit model, the regression parameters can be interpreted as both the conditional covariate effects given frailty and the marginal covariate effects up to a multiplicative constant, and the intracluster association can be summarized by two nonparametric measures in simple and explicit form. A fully Bayesian estimation approach is developed based on the use of monotone splines for the unknown nondecreasing function and a data augmentation using normal latent variables. The proposed Gibbs sampler is straightforward to implement since all unknowns have standard form in their full conditional distributions. The proposed method performs very well in estimating the regression parameters as well as the intracluster association, and the method is robust to frailty distribution misspecifications as shown in our simulation studies. Two real‐life data sets are analyzed for illustration.  相似文献   

9.
Naskar M  Das K  Ibrahim JG 《Biometrics》2005,61(3):729-737
A very general class of multivariate life distributions is considered for analyzing failure time clustered data that are subject to censoring and multiple modes of failure. Conditional on cluster-specific quantities, the joint distribution of the failure time and event indicator can be expressed as a mixture of the distribution of time to failure due to a certain type (or specific cause), and the failure type distribution. We assume here the marginal probabilities of various failure types are logistic functions of some covariates. The cluster-specific quantities are subject to some unknown distribution that causes frailty. The unknown frailty distribution is modeled nonparametrically using a Dirichlet process. In such a semiparametric setup, a hybrid method of estimation is proposed based on the i.i.d. Weighted Chinese Restaurant algorithm that helps us generate observations from the predictive distribution of the frailty. The Monte Carlo ECM algorithm plays a vital role for obtaining the estimates of the parameters that assess the extent of the effects of the causal factors for failures of a certain type. A simulation study is conducted to study the consistency of our methodology. The proposed methodology is used to analyze a real data set on HIV infection of a cohort of female prostitutes in Senegal.  相似文献   

10.
In this study we introduce a likelihood-based method, via the Weibull and piecewise exponential distributions, capable of accommodating the dependence between failure and censoring times. The methodology is developed for the analysis of clustered survival data and it assumes that failure and censoring times are mutually independent conditional on a latent frailty. The dependent censoring mechanism is accounted through the frailty effect and this is accomplished by means of a key parameter accommodating the correlation between failure and censored observations. The full specification of the likelihood in our work simplifies the inference procedures with respect to Huang and Wolfe since it reduces the computation burden of working with the profile likelihood. In addition, the assumptions made for the baseline distributions lead to models with continuous survival functions. In order to carry out inferences, we devise a Monte Carlo EM algorithm. The performance of the proposed models is investigated through a simulation study. Finally, we explore a real application involving patients from the Dialysis Outcomes and Practice Patterns Study observed between 1996 and 2015.  相似文献   

11.
Summary Several statistical methods for detecting associations between quantitative traits and candidate genes in structured populations have been developed for fully observed phenotypes. However, many experiments are concerned with failure‐time phenotypes, which are usually subject to censoring. In this article, we propose statistical methods for detecting associations between a censored quantitative trait and candidate genes in structured populations with complex multiple levels of genetic relatedness among sampled individuals. The proposed methods correct for continuous population stratification using both population structure variables as covariates and the frailty terms attributable to kinship. The relationship between the time‐at‐onset data and genotypic scores at a candidate marker is modeled via a parametric Weibull frailty accelerated failure time (AFT) model as well as a semiparametric frailty AFT model, where the baseline survival function is flexibly modeled as a mixture of Polya trees centered around a family of Weibull distributions. For both parametric and semiparametric models, the frailties are modeled via an intrinsic Gaussian conditional autoregressive prior distribution with the kinship matrix being the adjacency matrix connecting subjects. Simulation studies and applications to the Arabidopsis thaliana line flowering time data sets demonstrated the advantage of the new proposals over existing approaches.  相似文献   

12.
Individuals may experience more than one type of recurrent event and a terminal event during the life course of a disease. Follow‐up may be interrupted for several reasons, including the end of a study, or patients lost to follow‐up, which are noninformative censoring events. Death could also stop the follow‐up, hence, it is considered as a dependent terminal event. We propose a multivariate frailty model that jointly analyzes two types of recurrent events with a dependent terminal event. Two estimation methods are proposed: a semiparametrical approach using penalized likelihood estimation where baseline hazard functions are approximated by M‐splines, and another one with piecewise constant baseline hazard functions. Finally, we derived martingale residuals to check the goodness‐of‐fit. We illustrate our proposals with a real dataset on breast cancer. The main objective was to model the dependency between the two types of recurrent events (locoregional and metastatic) and the terminal event (death) after a breast cancer.  相似文献   

13.
Yin G  Ibrahim JG 《Biometrics》2005,61(1):208-216
For multivariate failure time data, we propose a new class of shared gamma frailty models by imposing the Box-Cox transformation on the hazard function, and the product of the baseline hazard and the frailty. This novel class of models allows for a very broad range of shapes and relationships between the hazard and baseline hazard functions. It includes the well-known Cox gamma frailty model and a new additive gamma frailty model as two special cases. Due to the nonnegative hazard constraint, this shared gamma frailty model is computationally challenging in the Bayesian paradigm. The joint priors are constructed through a conditional-marginal specification, in which the conditional distribution is univariate, and it absorbs the nonlinear parameter constraints. The marginal part of the prior specification is free of constraints. The prior distributions allow us to easily compute the full conditionals needed for Gibbs sampling, while incorporating the constraints. This class of shared gamma frailty models is illustrated with a real dataset.  相似文献   

14.
Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan-Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval $$({t}_{k-1},{t}_{k}]$$, conditional on being at risk at $${t}_{k-1}$$, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension.  相似文献   

15.
We propose a joint analysis of recurrent and nonrecurrent event data subject to general types of interval censoring. The proposed analysis allows for general semiparametric models, including the Box–Cox transformation and inverse Box–Cox transformation models for the recurrent and nonrecurrent events, respectively. A frailty variable is used to account for the potential dependence between the recurrent and nonrecurrent event processes, while leaving the distribution of the frailty unspecified. We apply the pseudolikelihood for interval-censored recurrent event data, usually termed as panel count data, and the sufficient likelihood for interval-censored nonrecurrent event data by conditioning on the sufficient statistic for the frailty and using the working assumption of independence over examination times. Large sample theory and a computation procedure for the proposed analysis are established. We illustrate the proposed methodology by a joint analysis of the numbers of occurrences of basal cell carcinoma over time and time to the first recurrence of squamous cell carcinoma based on a skin cancer dataset, as well as a joint analysis of the numbers of adverse events and time to premature withdrawal from study medication based on a scleroderma lung disease dataset.  相似文献   

16.
Siannis F 《Biometrics》2004,60(3):704-714
In this article, we explore the use of a parametric model (for analyzing survival data) which is defined to allow sensitivity analysis for the presence of informative censoring. The dependence between the failure and the censoring processes is expressed through a parameter delta and a general bias function B(t, theta). We calculate the expectation of the potential bias due to informative censoring, which is an overall measure of how misleading our results might be if censoring is actually nonignorable. Bounds are also calculated for quantities of interest, e.g., parameter of the distribution of the failure process, which do not depend on the choice of the bias function for fixed delta. An application that relates to systematic lupus erythematosus data illustrates how additional information can result in reducing the uncertainty on estimates of the location parameter. Sensitivity analysis on a relative risk parameter is also explored.  相似文献   

17.
Mahé C  Chevret S 《Biometrics》1999,55(4):1078-1084
Multivariate failure time data are frequently encountered in longitudinal studies when subjects may experience several events or when there is a grouping of individuals into a cluster. To take into account the dependence of the failure times within the unit (the individual or the cluster) as well as censoring, two multivariate generalizations of the Cox proportional hazards model are commonly used. The marginal hazard model is used when the purpose is to estimate mean regression parameters, while the frailty model is retained when the purpose is to assess the degree of dependence within the unit. We propose a new approach based on the combination of the two aforementioned models to estimate both these quantities. This two-step estimation procedure is quicker and more simple to implement than the EM algorithm used in frailty models estimation. Simulation results are provided to illustrate robustness, consistency, and large-sample properties of estimators. Finally, this method is exemplified on a diabetic retinopathy study in order to assess the effect of photocoagulation in delaying the onset of blindness as well as the dependence between the two eyes blindness times of a patient.  相似文献   

18.
The incidence of testicular cancer is highest among young men, and then decreases sharply with age. This points towards a frailty effect, where some men have a much greater risk of testicular cancer than the majority of the male population. Those with the highest risk get cancer, drain the group of individuals at risk, and leave a healthy male population which has approximately zero risk of testicular cancer. This leads to the observed decrease in incidence. We discuss a frailty model, where the frailty is compound-Poisson-distributed. This allows for a non-susceptible group (of zero frailty). The model is successfully applied to incidence data from the Danish and Norwegian registries. It is indicated that there was a decrease in incidence for males born during World War II in both countries. Bootstrap analysis is used to find the degree of variation in the estimates. In the Armitage-Doll multistage model, the estimated number of transitions needed for a cell to become malignant is close to 3 for non-seminomas and 4 for seminomas in both the Danish and Norwegian data. This paper demonstrates that a model including a frailty effect fits the incidence data well and gives interesting results and interpretations, although this is no proof of the effect's truth.  相似文献   

19.
Most statistical methods for censored survival data assume there is no dependence between the lifetime and censoring mechanisms, an assumption which is often doubtful in practice. In this paper we study a parametric model which allows for dependence in terms of a parameter delta and a bias function B(t, theta). We propose a sensitivity analysis on the estimate of the parameter of interest for small values of delta. This parameter measures the dependence between the lifetime and the censoring mechanisms. Its size can be interpreted in terms of a correlation coefficient between the two mechanisms. A medical example suggests that even a small degree of dependence between the failure and censoring processes can have a noticeable effect on the analysis.  相似文献   

20.
Yu Z  Lin X  Tu W 《Biometrics》2012,68(2):429-436
We consider frailty models with additive semiparametric covariate effects for clustered failure time data. We propose a doubly penalized partial likelihood (DPPL) procedure to estimate the nonparametric functions using smoothing splines. We show that the DPPL estimators could be obtained from fitting an augmented working frailty model with parametric covariate effects, whereas the nonparametric functions being estimated as linear combinations of fixed and random effects, and the smoothing parameters being estimated as extra variance components. This approach allows us to conveniently estimate all model components within a unified frailty model framework. We evaluate the finite sample performance of the proposed method via a simulation study, and apply the method to analyze data from a study of sexually transmitted infections (STI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号