首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tendon slices were used as model surfaces to investigate the role of flagella in the adhesion of Pseudomonas fluorescens to meat. The slices were introduced into a specially designed flow chamber, which was then filled with a suspension of the organism, and the tendon surface was observed at a x640 magnification. The same events that occur during the colonization of glass surfaces (apical adhesion of cells with rotation around the contact point, longitudinal adhesion, detachment of apically and longitudinally adherent cells) were also observed on tendon. Mechanical removal of the flagella resulted in no change in the contact angles with 0.1 M saline or alpha-bromonaphthalene, in the electrophoretic mobility, or in the adhesion of the organism to hydrophobic and ion-exchange resins. In addition, cells from which flagella had been mechanically removed still adhered extensively to tendon. Nevertheless, under comparable conditions (bacterial concentration, contact time), flagellated cells adhered to tendon in larger numbers than did deflagellated cells. This was entirely due to the ability of the motile flagellated cells to reach tendon in greater numbers than deflagellated cells.  相似文献   

2.
A new method was developed for the study of bacterial adhesion to meat surfaces. Thin slices of meat (40 microns thick) were inserted into a specially designed observation chamber. The meat slices were then exposed to a bacterial suspension (ca. 10(6) CFU.ml-1) to initiate adhesion (20 min of contact time) and subsequently rinsed to eliminate nonadherent bacteria. Because of the special chamber design, the disruptive force exerted on the bacteria during rinsing (shear stress) was uniform over the whole surface of the meat slices, was constant, and could be varied from 0 to 0.08 N.m-2. After being rinsed, the meat slices were stained with basic fuschin and observed under light microscopy to determine the number and distribution of adherent bacteria. This new method was used to study the adhesion of Acinetobacter strain LD2, a Lactobacillus sp., and Pseudomonas fluorescens to slices of beef fat and tendon. At 25 degrees C, most (greater than or equal to 99.9%) of the cells of the Lactobacillus sp. deposited on the meat were washed off the surface during rinsing (0.05 N.m-2), whereas a large number (ca. 10(5) CFU.cm-2) of Acinetobacter strain LD2 and P. fluorescens cells remained adherent. The extent of adhesion was similar on fat and tendon, and adherent bacteria were distributed evenly over the whole surface of the slices. This preliminary study indicates that the combined use of thin slices of meat and of the observation chamber provides us with the means to more accurately study bacterial adhesion to meat surfaces.  相似文献   

3.
New method to study bacterial adhesion to meat.   总被引:1,自引:1,他引:0       下载免费PDF全文
A new method was developed for the study of bacterial adhesion to meat surfaces. Thin slices of meat (40 microns thick) were inserted into a specially designed observation chamber. The meat slices were then exposed to a bacterial suspension (ca. 10(6) CFU.ml-1) to initiate adhesion (20 min of contact time) and subsequently rinsed to eliminate nonadherent bacteria. Because of the special chamber design, the disruptive force exerted on the bacteria during rinsing (shear stress) was uniform over the whole surface of the meat slices, was constant, and could be varied from 0 to 0.08 N.m-2. After being rinsed, the meat slices were stained with basic fuschin and observed under light microscopy to determine the number and distribution of adherent bacteria. This new method was used to study the adhesion of Acinetobacter strain LD2, a Lactobacillus sp., and Pseudomonas fluorescens to slices of beef fat and tendon. At 25 degrees C, most (greater than or equal to 99.9%) of the cells of the Lactobacillus sp. deposited on the meat were washed off the surface during rinsing (0.05 N.m-2), whereas a large number (ca. 10(5) CFU.cm-2) of Acinetobacter strain LD2 and P. fluorescens cells remained adherent. The extent of adhesion was similar on fat and tendon, and adherent bacteria were distributed evenly over the whole surface of the slices. This preliminary study indicates that the combined use of thin slices of meat and of the observation chamber provides us with the means to more accurately study bacterial adhesion to meat surfaces.  相似文献   

4.
The adsorption of beta-lactoglobulin, bovine serum albumin, alpha-lactalbumin, and beta-casein for 8 h and beta-lactoglobulin and bovine serum albumin for 1 h at silanized silica surfaces of low and high hydrophobicity, followed by incubation in buffer and contact with Listeria monocytogenes, resulted in different numbers of cells adhered per unit of surface area. Adhesion to both surfaces was greatest when beta-lactoglobulin was present and was lowest when bovine serum albumin was present. Preadsorption of alpha-lactalbumin and beta-casein showed an intermediate effect on cell adhesion. Adsorption of beta-lactoglobulin for 1 h resulted in a generally lower number of cells adhered compared with the 8-h adsorption time, while the opposite result was observed with respect to bovine serum albumin. The adhesion data were explainable in terms of the relative rates of arrival to the surface and postadsorptive conformational change among the proteins, in addition to the extent of surface coverage in each case.  相似文献   

5.
Flagella, intact deflagellated cells and isolated cell surfaces of the unicell , Euglena were separately assayed for glycosyltransferase activity by incubating these fractions with uridine diphosphate-[3H]glucose and isolating radiolabeled products. Most of the label was incorporated into lipophilic products, soluble in chloroform/methanol, which could be separated via thin layer chromatography or LH-60 chromatography into four distinct classes. The most polar of these products was extracted from flagella and purified by column chromatography for use as an in vitro substrate to identify flagella-associated glycosyltransferases. After flagella were treated with the detergent CHAPS , a soluble fraction was removed that was capable of glycosylation in solution. The glycosyltransferase(s) responsible for this activity were further enriched on sucrose or fructose gradients and ultimately identified on acrylamide gels through the combined use of nondenaturing gels, dial-[3H]uridine diphosphate binding, and fluorography. The enzyme had an apparent monomer molecular weight of 32,000 and consisted of four or fewer subunits. The occurrence of endogenous glycosyltransferase(s) in flagella suggests that modifications and/or assembly of the flagella surface can take place in situ in this organism.  相似文献   

6.
Adsorption kinetics of laterally and polarly flagellated Vibrio.   总被引:27,自引:4,他引:23       下载免费PDF全文
The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral flagella, bacterial adsorption did not follow the Langmuir adsorption isotherm; instead, proportional adsorption kinetics were observed. The adsorption of some polarly flagellated bacteria exhibited surface saturation kinetics. However, the binding index (the product of the number of binding sites and bacterial affinity to the surface) of polarly flagellated bacteria differed significantly from that of laterally flagellated bacteria, suggesting that polarly flagellated bacteria adsorb to chitin by a different mechanism from that used by the laterally flagellated bacteria. From the results of dual-label adsorption competition experiments, in which polarly flagellated V. cholerae competed with increasing concentrations of laterally flagellated V. parahaemolyticus, it was observed that laterally flagellated bacteria inhibited the adsorption of polarly flagellated bacteria. In contrast, polarly flagellated bacteria enhanced the adsorption of V. cholerae. In competition experiments, where V. parahaemolyticus competed against increasing concentrations of other bacteria, polarly flagellated bacteria enhanced V. parahaemolyticus adsorption significantly, whereas laterally flagellated bacteria only slightly enhanced the process. The direct correlation observed between surface saturation kinetics, the production of lateral flagella, and the ability of laterally flagellated bacteria to inhibit the adsorption of polarly flagellated bacteria suggests that lateral flagella represent a component of bacterial structure that is important in the adsorption of laterally flagellated bacteria to surfaces. A model for adsorption events of laterally flagellated bacteria is proposed, based on the evidence presented.  相似文献   

7.
Multitrichously polar flagellated mutants were isolated from a monotrichously flagellated strain of Pseudomonas aeruginosa. The ability of the mutant cells to swarm in semisolid media at given gel strengths was increased by the multiflagellation. Observations of the mutant cells by electron microscopy revealed that the number of flagella produced per cell cycle was increased. F116 phage-mediated transduction showed that the multiflagellation occurred by a single mutation and that the mutation sites were linked to a fla cluster of this organism.  相似文献   

8.
Studies have been made of the initial stages in adsorption of several polarly flagellated marine bacteria to glass surfaces. Bacteria attach at the pole of flagellar insertion, and after a brief period (from a few seconds to a few minutes) of rotation around the attachment axis, become immobile. Soma do not spin or gyrate while the organisms rotate slowly. Flagellar activity continues for several minutes after soma immobilization. Tween 80 inhibits bacterial attachment, and deflagellated organisms do not adsorb to glass. Bacteria rendered nonmotile with sodium azide (NaN3) rapidly adsorb to glass and cannot be removed by washing with artificial seawater or a solution of 2.4% NaCl. It is proposed that both flagella-surface and somasurface interactions are involved in bacterial attachment. Bacterial flagella may play an important ecological role as attachment organelles.  相似文献   

9.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction.  相似文献   

10.
Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.   总被引:9,自引:0,他引:9       下载免费PDF全文
The sulfur-binding protein of Thiobacillus ferrooxidans ATCC 23270 was investigated. The protein composition of the bacterium's cell surface changed according to the culture substrate. Sulfur-grown cells showed greater adhesion to sulfur than iron-grown cells. The sulfur-grown cells synthesized a 40-kDa surface protein which was not synthesized by iron-grown cells. The 40-kDa protein had thiol groups and strongly adhered to elemental sulfur powder. This adhesion was not disturbed by Triton X-100, which can quench hydrophobic interactions. However, adhesion was disturbed by 2-mercaptoethanol, which broke the disulfide bond. The thiol groups of the 40-kDa protein formed a disulfide bond with elemental sulfur and mediated the strong adhesion between T. ferrooxidans cells and elemental sulfur. The 40-kDa protein was located on the flagella. The location of the protein would make it possible for cells to be in closer contact with the surface of elemental sulfur powder.  相似文献   

11.
The swimming pattern of bacteria with single polar flagella has usually been described as "run and reverse". We observed the swimming traces of monotrichously flagellated Vibrio alginolyticus cells and examined the relationship between the swimming pattern and the sense of progress. Swimming in regions other than a solid surface was confirmed to be linear run and reverse. Near a solid surface, the traces consisted of "run and arc"; the cells were found to curve sharply during backward swimming, while they progressed linearly during forward swimming. The "run and arc" swimming pattern may play an important role in the chemotaxis strategy of marine bacteria at solid surfaces.  相似文献   

12.
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules.  相似文献   

13.
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules.  相似文献   

14.
Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces.  相似文献   

15.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

16.
Intercellular structure in a many-celled magnetotactic prokaryote   总被引:5,自引:0,他引:5  
A many-called magnetotactic prokaryote obtained from brackish water was observed to possess intercellular connections at points of contact between the outer membranes of constituent cells. Each aggregate organism consisted of 10 to 30 individual Gram-negative cells containing material with the appearance of poly--hydroxybutyrate and magnetosomes of unusual arrangement, structure and composition. The aggregate, which possessed prokaryotic-type flagella arranged at the outwards surfaces of each cell, showed motility indicative of co-ordination between individual component cells. These results suggest that this organism could be a multicellular prokaryote.  相似文献   

17.

Diatom adhesion to different gel surfaces was tested under different shear conditions, using the fouling marine diatom Amphora coffeaeformis as test organism. Four polymers were selected to obtain a test matrix containing gels with different surface charge as well as different surface energies, viz. agarose, alginate, chitosan and chemically modified polyvinylalcohol (PVA‐SbQ). Three experimental systems were applied to obtain different shear rates. Experimental system 1 consisted of gels cast in a cell culturing well plate for comparing initial adhesion as well as long term biofilm development in the absence of shear. In experimental system 2, microscope slide based test surfaces were tested in aquaria under low shear conditions. A rotating annular biofilm reactor was used to obtain high and controlled shear rates. At high shear rates A. coffeaeformis cells adhered better to the charged polymer gels (alginate and chitosan) than to the low charged polymer gels (agarose and PVA‐SbQ). In the system where shear was absent A. coffeaeformis cells developed a biofilm on agarose equivalent to the charged polymer gels, while adhesion to PVA‐SbQ remained low at all shear rates. It is concluded that non‐solid surfaces did not represent an obstacle to settling and growth of this organism. As observed for solid surfaces, low charge density led to reduced attachment, particularly at high shear.  相似文献   

18.
Y L Chiu  Y L Chou  C Y Jen 《Blood cells》1988,13(3):437-450
Platelet deposition on fibrin-coated surfaces and release from these adherent platelets were studied in an in vitro flow system. When a mixed suspension of washed platelets and red cells flowed through a fibrin-coated glass tube, only platelets were deposited onto the fibrin-coated surfaces. The density of adhered platelets increased with flow time and decreased with distance from the tube inlet. The adhesion rate increased with increasing shear rates from 45 s-1 to 180 s-1. This adhesion process appears to fit a diffusion-limited mathematical model. Comparing with glass and other protein-coated surfaces such as collagen, fibrinogen, or albumin coated surfaces, the number of adhered platelet per unit area decreased in the following descending order: collagen, fibrin, fibrinogen, glass, albumin. On the other hand, the degree of release reaction from these platelets decreased by another order: collagen, glass, fibrinogen, fibrin. We observed little release from platelets that were in contact with a fibrin-coated surface. Our results suggest that platelets specifically adhere to fibrin-coated surface and that this interaction does not induce platelet release.  相似文献   

19.
Bacterial cell surfaces play a crucial role in their adhesion to surfaces. In the present study, physico-chemical cell surface properties of Pseudomonas aeruginosa, isolated from a case of contact lens associated keratitis, are determined for mid-exponential and early stationary phase cells and for cells after exposure to a lens care solution or after mechanical damage by sonication. Exposure to a lens care solution and mechanical cell surface damage reduced the cell surface hydrophobicity and water contact angles decreased from 129 degrees to 96 degrees and 83 degrees, respectively. Zeta potentials in saline (-9 mV) were hardly affected after mechanical damage, but tri-modal zeta potential distributions, with subpopulation zeta potentials at -11, -28 and -41 mV, were observed after exposure of bacteria to a lens care solution. X-ray photoelectron spectroscopy indicated changes in the amounts of oxygen-, nitrogen- and phosphorus-rich cell surface components. Mid-exponential phase cells had more nitrogen-rich cell surface components than early stationary phase cells, but water contact angles and zeta potentials were not very different. In addition, mid-exponential phase cells adhered better than early stationary phase cells to hydrophobic and hydrophilic substrata in a parallel plate flow chamber. The capacity of P. aeruginosa to adhere was decreased after inflicting cell surface damage. Exposure to a lens care solution yielded a larger reduction in adhesion capacity than sonication, likely because sonication left most of the cells in a viable state, in contrast to exposure to a lens care solution. It is argued that for clinically relevant experiments, it may be preferable to work with surface damaged cells rather than with gently harvested organisms.  相似文献   

20.
To better understand the interaction between bacteria and surfaces, we studied the irreversible attachment of Pseudomonas aeruginosa to a common surfacing material. When brought into contact with the steel, cells began to attach in less than 1 min and the number adhering increased with time. An important physiological variable in attachment was cell motility since adherence decreased at least 90% when flagella were removed by blending. This treatment was shown to be effective because it caused motility loss and not because it removed a structure necessary for adherence. Cell viability was less important since adherence decreased only 50% when the number of viable cells was reduced 4.7 logs by heating or formaldehyde treatment. Significant environmental variables included turbulence and ionic strength. Attachment of motile cells was reduced 90% by agitation, although agitation had little effect on adherence of nonmotile cells. Both motile and nonmotile cells adhered poorly in distilled water with attachment increasing as CaCl2 or NaCl concentration increased to 10 mM. At 100 mM, attachment decreased. Viable cells, both motile and nonmotile, adhered best at a pH of 7 to 8, whereas nonviable cells attached most rapidly at a low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号