首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The severe strain of potato spindle tuber viroid (s-PSTV) as well as chrysanthemum stunt (CSV) and cucumber pale fruit (CPFV) viroids were found to be transmitted through seed and pollen of the tomato cvs. Rutgers and Najwcze?niejszy. Plants pollinated with a pollen infected with any of these three viroids became systematically infected. Plant, fruit and seed symptoms of viroid infection were noted on sap- and pollen-inoculated plants and the yield of these plants was reduced. Tomato cv. Rutgers plants grown from infected seeds were symptomless although all three viroids were detected in these plants by bioassay and by electrophoresis on 5% polyacrylamide gel. When DNA complementary to s-PSTV RNA was used for a direct viroid detection in seed samples by spot hybridization technique it hybridized not only with s-PSTV RNA but also with CSV RNA as well as with CPFV RNA.  相似文献   

3.
4.
The thermodynamic parameters of five different highly purified viroid "species" were determined by applying UV-absorption melting analysis and temperature jump methods. Their thermal denaturation proved to be a highly cooperative process with midpoint-temperatures (Tm) between 48.5 and 51 degrees C in 0.01 M sodium cacodylate, 1 mM EDTA, pH 6.8. The values of the apparent reaction enthalpies of the different viroid species range between 3,140 and 3,770 kJ/mol. Although the cooperativity is as high as found in homogeneous RNA double helices the Tm-value of viroid melting is more than 30 degrees C lower than in the homogeneous RNA. In order to explain this deviation, melting curves were simulated for different models of the secondary structure of viroids using literature values of the thermodynamic parameters of nucleic acids. Our calculations show that the following refinement of our earlier model is in complete accordance with the experimental data: In their native conformation viroids exist as an extended rodlike structure characterized by a series of double helical sections and internal loops. In the different viroid species 250-300 nucleotides out of total 350 nucleotides are needed to interprete the thermodynamic behaviour.  相似文献   

5.
Viroids, small single-stranded circular RNA molecules, are the smallest known infectious agents in Nature. The apparent inability of viroids to encode for proteins means that they must rely fully on host functions for their replication. The specific ultrastructural localization of viroids is fundamental to the determination of their replication strategies. In this paper the first in situ hybridization study to localize viroids within the cell at the electron microscope level is reported. Biotin-labelled RNA probes were used with subsequent detection by gold-labelled monoclonal anti-biotin antibodies to localize avocado sunblotch viroid and coconut cadang cadang viroid. Avocado sunblotch viroid was located in chloroplasts, mostly on the thylakoid membranes of cells from infected leaves of avocado (Persea americana). In contrast, coconut cadang cadang viroid was located in the nucleolus and nucleoplasm of cells of infected leaves of oil palm (Elaeis guineensis), with a higher concentration in the nucleolus. The results provide insight on the potential host RNA polymerases involved in the replication of these two viroids.  相似文献   

6.
《Research in virology》1990,141(1):109-118
Analysis by polyacrylamide gel electrophoresis of nucleic acid extracts from different peach samples, healthy or infected with the peach latent mosaic (PLM) disease, demonstrated the association of this disease with an RNA exhibiting the electrophoretic properties typical of circular viroid molecules. This RNA was called peach latent mosaic viroid (PLMV), since a purified preparation of it, when inoculated into GF 305 peach seedlings induced characteristic symptoms of PLM disease. PLMV was estimated to have a molecular size in the range of 330–340 bases, by comparison of its electrophoretic mobility under denaturing conditions with those of several viroid RNA. Dot-blot analysis showed that PLMV has a sequence clearly different from other viroids, including citrus exocortis viroid, apple scar skin viroid (ASSV), hop stunt viroid (HSV) and avocado sunblotch viroid. The possible significance of the limited sequence homology shared by PLMV with HSV, and especially with ASSV, is discussed.  相似文献   

7.
Fatal yellowing is a serious disease of still unknown origin affecting oil palms in several regions of Central and South America. In this study a search for viroids and viroid-like RNAs in oil palms was performed using two-dimensional gel electrophoresis and return gel electrophoresis of nucleic acid extracts. Although RNAs showing viroid-like gel-electrophoretic properties were detected, the presence of the known viroids was excluded by hybridization experiments using probes specific for potato spindle tuber viroid (PSTVd), coconut cadang-cadang viroid (CCCVd), or Coleus blumei viroid 1 (CbVd1). By using double-stranded RNA (dsRNA) specific monoclonal antibodies, which do not react with viroid RNA, we were able to show that oil palm RNAs, migrating like viroids are double-stranded RNA species. Since the same dsRNA pattern was found in extracts from diseased as well as from healthy oil palms, the dsRNAs can neither be part of the causative agent of fatal yellowing, nor are they associated with the disease. Their possible origin is discussed. In addition to the standard electrophoretic methods, which have been used for identification of viroids and viroid-like RNAs, we describe additional control experiments to differentiate unequivocally between circular single stranded and linear dsRNA.  相似文献   

8.
Viroids: an Ariadne's thread into the RNA labyrinth   总被引:4,自引:0,他引:4  
  相似文献   

9.
Confocal laser scanning microscopy and transmission electron microscopy (TEM) were used in conjunction with in situ hybridization techniques to compare and contrast the subnuclear (ultrastructural) and tissue (histological) localizations, respectively, of citrus exocortis viroid (CEV) and coconut cadang cadang viroid (CCCV). Both these viroids, which are members of the same taxonomic subgroup of viroids, were found in the vascular tissues as well as in the nuclei of mesophyll cells of infected host plants. At the subnuclear level, however, CEV was distributed across the entire nucleus, in contrast to CCCV which was mostly concentrated in the nucleolus with the remainder distributed throughout the nucleoplasm.  相似文献   

10.
11.
Viroids, small non-coding pathogenic RNAs, are able to induce RNA silencing, a phenomenon that has been associated with the pathogenesis and evolution of these small RNAs. It has been recently suggested that viroids may resist this plant defense mechanism. However, the simultaneous degradation of non-replicating full-length viroid RNA, and the resistance of mature forms of viroids to RNA silencing, have not been experimentally demonstrated. Transgenic Nicotiana benthamiana plants expressing a dimeric form of Hop stunt viroid (HSVd) that have the capability to cleave and circularize this viroid RNA were used to address this question. A reporter construct, consisting of a full-length HSVd RNA fused to GFP-mRNA, was agroinfiltrated in these plants and its expression was suppressed. Interestingly, both circular and linear HSVd molecules were stable and able to traffic through grafts in these restrictive conditions, indicating that the mature forms of HSVd are able, in some way, to resist the RNA-silencing mechanism. The observation that a full-length HSVd RNA fused to GFP-mRNA, but not circular and/or linear viroid forms, was fully susceptible to RNA degradation strongly suggests that structures adopted by the free mature monomer protect the pathogenesis-associated forms of the viroid from RNA silencing.  相似文献   

12.
Australian grapevine viroid (AGV, 369 residues) is a novel viroid with less than 50% sequence similarity with any known viroid. Nevertheless its entire sequence can be divided into regions, each with a high sequence similarity with segments from one of citrus exocortis, potato spindle tuber, apple scar skin, and grapevine yellow speckle viroids. AGV contains the entire central conserved region of the apple scar skin viroid group and is proposed as a member of this group. AGV appears to have originated from extensive RNA recombination involving other viroids. The vegetatively propagated grapevines which have been exposed to multiple viroid infections during their long history of cultivation may have allowed such recombination.  相似文献   

13.
Nucleotide sequence and secondary structure of apple scar skin viroid.   总被引:18,自引:4,他引:14       下载免费PDF全文
The complete nucleotide sequence of apple scar skin viroid(ASSV) has been established, and a probable secondary structure is proposed. A single-stranded circular ASSV RNA consists of 330 nucleotides and can assume the rodlike conformation with extensive base-pairing characteristic of all the known viroids. ASSV shows low sequence homologies with other viroids and lacks the central conserved region. These indicate that ASSV should be allocated to a separate viroid group. However, homologous sequences with potato spindle tuber viroid(PSTV) in ASSV occur in limited and scattered regions of both viroids. These homologous regions fall within the particular domains in the viroid domain model which has been previously proposed by Keese and Symons(Proc. Natl. Acad. Sci. USA. 82, 4582-4586, 1985).  相似文献   

14.
R Hammond  D R Smith    T O Diener 《Nucleic acids research》1989,17(23):10083-10094
The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant.  相似文献   

15.
A single stranded circular RNA was isolated from grapevines infected with yellow speckle disease. The RNA which we have called grapevine yellow speckle viroid (GYSV), contains 367 nucleotide residues and has the potential to form the rod-like secondary structure characteristic of viroids. GYSV has 37% sequence homology with the recently described apple scar skin viroid (ASSV; 330 residues) and has some sequence homology with the viroids in the potato spindle tuber viroid (PSTV) group. The sequence of GYSV has characteristics which fit the structural domains described for the PSTV group. However, GYSV lacks the PSTV central conserved sequence. Instead, there is a conserved sequence in the central region of GYSV and ASSV which has the potential to form a stem loop configuration and a stable palindromic structure as does the central conserved region of the PSTV group. These structural features suggest there is a different central conserved region for GYSV and ASSV. The results support the viroid nature of GYSV and its inclusion into a separate viroid group which we suggest should be represented by ASSV.  相似文献   

16.
Structure and structure formation of viroids   总被引:24,自引:0,他引:24  
The structure of viroids and the mechanism of structure formation were investigated by different methods. Results from gel analysis, partial degradation pattern, electron microscopy, dye binding, hydrodynamic studies, and temperature-jump kinetics were interpreted in a common structural and mechanistic scheme. Gel analysis, electron microscopy and kinetic investigations show that viroids may assume the native as well as metastable conformations under the same conditions. The native conformation is obtained by complete renaturation, i.e. slow cooling throughout the transition range (e.g. 52 to 48 ° C for potato spindle tuber viroid (PST viroid) in 0.01 m-sodium cacodylate, pH 6.8). In contrast, metastable conformations were trapped if viroids were redissolved in the cold from their ethanol precipitate or if they were denatured and cooled quickly.The native secondary structure of the recently sequenced PST viroid (Gross et al., 1978) was optimized for the free energy of base-pairing. The scheme agrees with that proposed by Gross et al. (1978), which was derived from chemical arguments. The extended structure does not undergo tertiary structure folding under a wide range of conditions, as was concluded from electron microscopy, sedimentation measurements and binding studies of ethidium bromide and a new dye specific for A · U pairs (2-(4′-aminophenyl)-5-(4′-methylpiperazin-1″yl)-benzirnidazol).Intermediate structures during viroid denaturation were analysed on theoretical and experimental grounds. The experimental data, in combination with the model calculations, show that all of the native base-pairs of viroids are dissociated in one highly co-operative main transition, and that during the same process very stable hairpins are formed that are not present in the native structure. The formation of stable hairpins induces a new type of long range cooperativity, which is responsible in part for the high co-operativity observed experimentally. This interpretation is in good agreement with kinetic results presented elsewhere (Henco et al., 1979).In order to understand the uniqueness of viroids, the structure and the conformational transitions of circular RNA molecules of the same base composition as PST viroids but with 359 nucleotides arranged randomly, were studied theoretically. Common viroid features, such as the number of base-pairs, the high co-operativity and the formation of very stable hairpins, are found to be improbable in such random sequences. It is concluded that various viroid species, although differing in nucleotide sequence, follow common principles of structure and structure formation.  相似文献   

17.
B Haas  A Klanner  K Ramm    H L Snger 《The EMBO journal》1988,7(13):4063-4074
From tomato leaf tissue we sequenced and characterized a 7S RNA which consists of 299 nucleotides with either two or three additional uridine nucleotides at its 3'-terminus. About 56% of the nucleotides of this higher plant 7S RNA are in nearly identical positions as those of the human 7SL RNA which is an integral component of the signal recognition particle (SRP) that mediates protein translocation. Computer modelling and digestion studies with nucleases led to a secondary structure model for tomato 7S RNA, the overall shape of which is very similar to that of the human 7SL (SRP) RNA. This structural similarity strongly suggests that tomato 7S RNA is actually an SRP RNA and an integral part of the plant SRP, and that the protein translocation system of higher plants is very similar to the one operating in mammalian cells. Tomato SRP RNA contains a stretch of 36-53 nucleotides which exhibit a high degree of sequence complementarity to five viroid 'species' that cause disease in tomato. In the case of potato spindle tuber viroid and citrus exocortis viroid this complementarity spans the lower strand of the region, the nucleotides of which are known to modulate virulence. This extensive sequence complementarity could lead to a thermodynamically favoured base-pairing in vivo which renders the tomato SRP RNA a possible host target with which viroids could interact and thus incite disease.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号