首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid PCR-RFLP analysis was designed to identify 3 closely related species of hairtails: Trichiurus lepturus, T. japonicus, and Trichiurus sp. 2, basing on partial sequence data (600 bp) of the mitochondrial DNA encoding the 16S ribosomal RNA (16S rRNA) gene. Restriction digestion analysis of the unpurified PCR products of these 3 species, using EcoRI and VspI endonucleases, generated reproducible species-specific restriction patterns showing 2 fragments (250 bp and 350 bp) for T. lepturus in EcoRI digestion and 2 fragments (196 bp and 404 bp) for T. japonicus in VspI digestion, whereas no cleavage was observed for Trichiurus sp. 2 in both EcoRI and VspI digestions. The PCR-RFLP technique developed in this study proved to be a rapid, reliable and simple method that enables easy and accurate identification of these 3 closely related species of the genus Trichiurus.  相似文献   

2.
This study amplified the mitochondrial 16S rRNA gene using polymerase chain reaction (PCR) with a template of total DNA from muscle tissues of nine pufferfish species collected from the coastal area of Okinawa Islands in Japan: Pleuranacanthus sceleratus, Triodon macropterus, Chelonodon patoca, Sphoeroides pachygaster, Arothron hispidus, A. stellatus, A. manilensis, A. mappa, and A. nigropunctatus. Then nucleotide sequence encoding a partial region of the 16S rRNA gene was compared among species. The sequenced fragment was also used to select restriction enzymes, yielding species-specific restriction fragment length polymorphisms (RFLP). The sequence of the segment of the 16S rRNA gene consisted of about 615 nucleotides and showed interspecies variations in the targeted region. After calculation of corresponding RFLP-patterns of nine species investigated with suitable restriction enzymes, three restriction enzymes – BanII, DdeI, and NlaIII – were found to be sufficient for identification of all nine species. Successful testing of this methodology in frozen and heated food samples suggests its utility for pufferfish species authentication in food products.  相似文献   

3.
Cryptosporidium is an important protozoan that causes diarrheal illness in humans and animals. Different species of Cryptosporidium have been reported and it is believed that species characteristics are an important factor to be considered in strategic planning for control. We therefore analyzed oocysts from human and animal isolates of Cryptosporidium by PCR-RFLP to determine strain variation in Isfahan. In total, 642 human fecal samples from children under five years of age, imunocompromised patients, and high-risk persons and 480 randomly selected rectal specimens of cows and calves in Isfahan were examined. Microscopic examination showed that 4.7% (30/642) of human samples and 6.2% (30/480) of animal samples were infected with Cryptosporidium. After identification of the samples infected with the parasite, oocysts were purified and their DNA was extracted. We used PCR-RFLP analysis of a 1750-bp region of the 18S rRNA gene to identify Cryptosporidium species. The human samples were infected with Cryptosporidium parvum II, C. muris, C. wrairi, and a new genotype of Cryptosporidium (GenBank accession no. DQ520951). The cattle samples were identified as C. parvum II, C. muris, C. wrairi, C. serpentis, C. baileyi, and a new genotype of Cryptosporidium (GenBank accession no. DQ520952). We also found a new genotype infecting both human and cattle samples (GenBank accession no. DQ520950). In addition to demonstrating the widespread occurrence of most species of Cryptosporidium, C. parvum, we also observed extensive polymorphism within species. Furthermore, the occurrence of the same species of parasite in both animal and human samples shows the importance of the animal and human cycle. Published in Russian in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 5, pp. 934–939. The article was translated by the authors.  相似文献   

4.
5.
A PCR-RFLP method targeted toward 26S rDNA and with 2 restriction enzymes, CfoI and BstF51, was developed to identify 11 Malassezia species. Not only type and standard strains but also 13 clinical isolates were identified successfully in this study. The results of identifications were confirmed by DNA sequencing.  相似文献   

6.
Accurate identification of bacterial isolates is an essential task in clinical microbiology. Phenotypic methods are time-consuming and either fail to identify some bacteria such as Gram-positive rods entirely or at least fail to do so in some clinical situations. 16S rDNA sequencing is a recent method of identification which offers a useful alternative. In this study, we investigate the usefulness of this method for identifying a range of bacteria in a clinical laboratory under routine conditions. Over a period of 30 months, 683 isolates were obtained from clinical specimens, sequenced and analysed. For 568 of these isolates (83.1%), the sequence provided species level identification. For 108 isolates (15.8%), the identification was limited to the genus level, and for 7 isolates (1%), the sequence remained unidentifiable by 16S rDNA sequence analysis. For the isolates identified only to the genus level, the 16S rDNA approach failed to identify bacteria to the taxonomic level for 3 reasons: failure to differentiate between species in 72 isolates (66%), the lack of any closely related sequence in the database for 15 isolates (13.8%) and the presence of more than 1% of undetermined position in the sequence for 13 isolates (12%).  相似文献   

7.
AIM: To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. METHODS AND RESULTS: Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.  相似文献   

8.
A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method was developed to detect and identify typical Leuconostoc species. This method utilises a set of specific primers for amplification of the 16S rDNA region of typical Leuconostoc species. All Leuconostoc-type strains, all Leuconostoc isolates from kimchi, Korea's traditional, fermented vegetable product, and strains from closely related genera were examined to verify the identification by this method. The primers resulted in amplification only for nine typical Leuconostoc spp., but not for any other genera tested. The size of the amplified products was 976 bp and the amplicons of the different species could be differentiated from each other with MseI, HaeIII and Tsp509I endonucleases, except for the species Leuconostoc argentinum and Leuconostoc lactis, which were indistinguishable. A PCR-RFLP method for the typical Leuconostoc species was optimized to identify a large number of isolates from fermented vegetable product. This PCR-RFLP method enables the rapid and reliable identification of Leuconostoc species and to distinguish them from the other phylogenetically related lactic acid bacteria in food samples.  相似文献   

9.
The aim of this study was to isolate and characterize bacteria from the compost of fruit and vegetable waste (FVW) for plant growth-promoting (PGP) activities and investigate the pro-active influence of bacterial isolates on wheat growth. Fourteen bacterial strains (RHC-1 to RHC-14) were isolated and purified in tryptic soya agar (TSA). In addition to being biochemically characterized, these bacterial strains were also tested for their PGP traits, such as phosphate (P)-solubilization, nifH gene amplification, indole-3-acetic acid (IAA) quantification and the production of ammonia, oxidase and catalase. Based on 16S rRNA gene sequencing, these bacterial strains were identified as belonging to species of Bacillus, Lysinibacillus, Lysobacter, Staphylococcus, Enterobacter, Pseudomonas and Serratia. All bacterial strains solubilized tri-calcium phosphate and produced IAA. Two bacterial strains RHC-8 (Enterobacter sp.) and RHC-13 (Pseudomonas sp.) solubilized the maximum amount of tri-calcium phosphate, i.e. 486 and 464 μg/ml, respectively. P-solubilization was associated with a significant drop in the pH of the broth culture from an initial pH of 7 to pH 4.43. In addition to P-solubilization and IAA production, six bacterial strains also carried the nifH gene and were further evaluated for their effect on wheat (Triticum aestivum) growth under controlled conditions. All six bacterial strains enhanced wheat growth as compared to uninoculated control plants. Two of the bacterial strains, RHC-8 and RHC-13, identified as Enterobacter aerogenes and Pseudomonas brenneri, respectively, were assessed as potential PGP rhizobacteria due to exhibiting characteristics of four or more PGP traits and enhancing wheat growth though their specific mechanism of action.  相似文献   

10.
Nucleotide sequences from a 434-bp region of the 16S rRNA gene were analyzed for 65 taxa of Hymenoptera (ants, bees, wasps, parasitoid wasps, sawflies) to examine the patterns of variation within the gene fragment and the taxonomic levels for which it shows maximum utility in phylogeny estimation. A hierarchical approach was adopted in the study through comparison of levels of sequence variation among taxa at different taxonomic levels. As previously reported for many holometabolous insects, the 16S data reported here for Hymenoptera are highly AT-rich and exhibit strong site-to-site variation in substitution rate. More precise estimates of the shape parameter (alpha) of the gamma distribution and the proportion of invariant sites were obtained in this study by employing a reference phylogeny and utilizing maximum-likelihood estimation. The effectiveness of this approach to recovering expected phylogenies of selected hymenopteran taxa has been tested against the use of maximum parsimony. This study finds that the 16S gene is most informative for phylogenetic analysis at two different levels: among closely related species or populations, and among tribes, subfamilies, and families. Maximization of the phylogenetic signal extracted from the 16S gene at higher taxonomic levels may require consideration of the base composition bias and the site-to-site rate variation in a maximum-likelihood framework.   相似文献   

11.
Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.  相似文献   

12.
13.
Summary The gene of a cytoplasmic 18 S ribosomal RNA (18 S rDNA) of the dicotyledonous plant tomato (ycopersicon esculentum) cv. Rentita has been cloned, and its complete primary structure has been determined. The tomato 18 S rDNA is 1805 by long with a G+C content of 49.6%. Its sequence exhibits 94%–96% positional identity when it is colinearly aligned with the previously reported sequences of the 17–18 S rDNAs of the dicot soybean and the monocots maize and rice. A model of the secondary structure of the 18 S rRNA of angiosperms is presented and its genera-specific structural features are compared with a current eukaryotic 18 S rRNA consensus model.  相似文献   

14.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

15.
Raghava GP  Solanki RJ  Soni V  Agrawal P 《BioTechniques》2000,29(1):108-12, 114-6
The paper describes a method for the classification and identification of microorganisms based on variations in 16S rRNA sequences. The 16S rRNA is one of the most conserved molecules within a cell. The nature of the variable and spacer regions has been found to be specific to a given organism. Thus, the method presented here can be very useful for the classification and identification of microorganisms for which very little information is available. To automate the method, a comprehensive computer program called FPMAP has been developed for the analysis of restriction fragment pattern data. The method involves the restriction digestion of genomic DNA, preferably using four-cutters that may recognize 6-9 sites within the 16S rDNA. The fragments are separated on a polyacrylamide gel along with a suitable marker, then transferred into a nylon membrane and hybridized with a radiolabeled 16S rDNA probe. After autoradiography, the fragment sizes are calculated, and the data are analyzed using the FPMAP software. We demonstrate that the method can be used for identification of strains of Streptomyces and mycobacteria. The software is available from our ftp site ftp:?imtech.chd.nic.in/pub/com/fpmap/unix/.  相似文献   

16.
G Afseth  Y Y Mo    L P Mallavia 《Journal of bacteriology》1995,177(10):2946-2949
Characterization of the rRNA operon from the obligate intracellular bacterium Coxiella burnetii has determined the order of the rRNA genes to be 16S-23S-5S. A 444-bp intervening sequence (IVS) was identified to interrupt the 23S rRNA gene beginning at position 1176. The IVS is predicted to form a stem-loop structure formed by flanking inverted repeats, and the absence of intact 23S rRNA molecules suggests that the loop is removed. An open reading frame in the IVS has been identified that shows 70% similarity at the amino acid level to IVS open reading frames characterized from four species of Leptospira.  相似文献   

17.
In this study,we determined species-specific variations by analyzing the mitochondrial 12S rRNA gene sequence variation(~440 bp) in 17 newly obtained sequences and 90 published cattle,yak,buffalo,goat,and pig sequences,which represent 62 breeds and 17 geographic regions.Based on the defined species-specific variations,two endonucleases,Alu I and Bfa I,were selected for species authentication using raw meat/tissue samples and the PCR-RFLP method.Goat and pig were identified using the Alu I enzyme,while cattle,yak,and buffalo were identified by digestion with Bfa I.Our approach had relatively high detection sensitivity of cattle DNA in mixed cattle and yak products,with the lowest detectable threshold equaling 20% of cattle DNA in a mixed cattle/yak sample.This method was successfully used to type commercial beef jerky products,which were produced by different companies utilizing various processing technologies.Our results show that several yak jerky products might be implicated in commercial fraud by using cattle meat instead of yak meat.  相似文献   

18.
19.
A molecular method based on restriction fragment length polymorphism (RFLP) of PCR-amplified fragments of the 23S rRNA gene was designed to rapidly identify Listeria strains to the species level. Two fragments (S1, 460 bp, and S2, 890 bp) were amplified from boiled DNA. S2 was cut with the restriction enzymes XmnI or CfoI and, if needed, S1 was digested by either AluI or ClaI. This method was first optimized with six reference strains and then applied to 182 isolates collected from effluents of treatment plants. All isolates were also identified by the API Listeria kit, hemolysis, and phosphatidylinositol-specific phospholipase C production (PI-PLC) on ALOA medium. The PCR-RFLP method unambiguously identified 160 environmental strains, including 131 in concordance with the API system, and revealed that 22 isolates were mixed cultures of Listeria monocytogenes and Listeria innocua. Discrepant results were resolved by a multiplex PCR on the iap gene, which confirmed the PCR-RFLP data for 49 of the 51 discordances, including the 22 mixed cultures. Sequencing of the 16S rRNA gene for 12 selected strains and reconstruction of a phylogenetic tree validated the molecular methods, except for two unclassifiable strains. The 158 single identifiable isolates were 92 L. monocytogenes (including seven nonhemolytic and PI-PLC-negative strains), 61 L. innocua, 4 Listeria seeligeri, and 1 Listeria welshimeri strain. The PCR-RFLP method proposed here provides rapid, easy-to-use, inexpensive, and reliable identification of the six Listeria species. Moreover, it can detect mixtures of Listeria species and thus is particularly adapted to environmental and food microbiology.  相似文献   

20.
A recA-PCR restriction fragment length polymorphism assay was developed to study intraspecies variation among Ochrobactrum anthropi. Primers deduced from the known recA gene sequence of the genetically closely related genus Brucella allowed the specific amplification of a 1065 bp recA fragment from each of the 38 O. anthropi and the eight Brucella strains investigated. RecA was also amplified from the type strains of O. intermedium, O. tritici, and O. lupini but could not be generated from O. grignonense and O. gallinifaecis. Subsequent comparative recA sequence- and HaeIII-recA restriction fragment length polymorphism analysis identified nine different genospecies among the tested 38 O. anthropi isolates, whereas the recA sequences of the Brucella spp. were indistinguishable. Furthermore, Brucella spp., O. anthropi, O. intermedium, and O. tritici were clearly separated from each other by means of their recA sequences and HaeIII restriction patterns. Five strains of uncertain species status listed in the Culture Collection University of G?teborg bacterial culture collection as O. anthropi were characterized by recA analysis, and their phylogenetic position within the Brucella-Ochrobactrum group was determined. In summary, recA-sequence analysis provides a new reliable molecular subtyping tool to study the phylogeny of the Ochrobactrum taxon at both the inter- and intraspecies level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号